|Table of Contents|

[1] Xu Jie, Shi Pengfei,. Active learning based on maximizing information gainfor content-based image retrieval [J]. Journal of Southeast University (English Edition), 2004, 20 (4): 431-435. [doi:10.3969/j.issn.1003-7985.2004.04.008]
Copy

Active learning based on maximizing information gainfor content-based image retrieval()
图像检索中基于最大信息获取量的主动学习算法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 4
Page:
431-435
Research Field:
Computer Science and Engineering
Publishing date:
2004-12-30

Info

Title:
Active learning based on maximizing information gainfor content-based image retrieval
图像检索中基于最大信息获取量的主动学习算法
Author(s):
Xu Jie Shi Pengfei
School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
徐杰 施鹏飞
上海交通大学电子信息与电气工程学院, 上海 200030
Keywords:
active learning content-based image retrieval relevance feedback support vector machines similarity measure
主动学习 基于内容的图像检索 相关反馈 支撑向量机 相似性测度
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2004.04.008
Abstract:
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine(SVM)classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user’s label. Finally, the learned query is refined based on the user’s further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user’s query concept quickly and effectively only with several iterations.
本文提出一种基于内容的图像中的主动学习算法. 首先用支撑向量机学习得到初始查询概念, 然后用相似性测度对其进行检验, 选取信息量最大的样本来请求用户标记, 最后在相关反馈的迭代优化过程中获取用户的图像查询概念. 算法通过支撑向量机二值分类器与相似性测度2种不同学习模型的融合, 来减轻它们各自所存在的模型偏置. 实验结果显示, 所提算法能够显著提高图像检索的精确度, 在少量的反馈迭代之后即能准确地获取目标概念.

References:

[1] Rui Y, Huang T S, Ortega M, et al. Relevance feedback: a power tool in interactive content-based image retrieval[J]. IEEE Trans Circuits and Systems for Video Tech, 1998, 8(5): 644-655.
[2] Seung H S, Opper M, Sompolinsky H. Query by committee[A]. In: Proc of the Fifth Workshop on Computational Learning Theory [C]. San Mateo, CA, 1992. 287-294.
[3] Freund Y, Seung H, Shamir E, et al. Selective sampling using the query by committee algorithm [J]. Machine Learning, 1997, 28(2, 3): 133-168.
[4] Chang E, Li B. MEGA — the maximizing expected generalization algorithm for learning complex query concepts [J]. ACM Transactions on Information Systems, 2003, 21(4): 347-382.
[5] Dagan I, Engelson S. Committee-based sampling for training probabilistic classifiers[A]. In: Proc of the Twelfth International Conference on Machine Learning [C]. Tahoe City, California, 1995. 150-157.
[6] Cohn D, Atlas L, Ladner R. Improving generalization with active learning [J]. Machine Learning, 1994, 15(2): 201-221.
[7] Lewis D, Gale W. A sequential algorithm for training text classifiers [A]. In: Proc of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval [C]. Dublin, Ireland, 1994. 3-12.
[8] Tong S, Chang E. Support vector machine active learning for image retrieval [A]. In: Proc of ACM Mutimedia [C]. Ottawa, Canada, 2001. 107-118.
[9] Campbell C, Cristianini N, Smola A. Query learning with large margin classifiers [A]. In: Proc of the Seventeenth International Conference on Machine Learning[C]. Stanford University, 2000. 111-118.
[10] Schohn G, Cohn D. Less is more: active learning with support vector machines [A]. In: Proc of the Seventeenth International Conference on Machine Learning [C]. Stanford University, 2000. 839-846.
[11] Vapnik V. Statistical learning theory[M]. New York: Addison Wiley, 1998.
[12] Carson C, Belongie S, Greenspan H.et al. Blobworld: image segmentation using expectation-maximization and its application to image querying[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(8): 1026-1038.

Memo

Memo:
Biographies: Xu Jie(1975—), female, graduate; Shi Pengfei(corresponding author), male, professor, pfshi@sjtu.edu.cn.
Last Update: 2004-12-20