[1] Sharma A, Zaman M F, Ayazi F. A 0.2°/hr micro-gyroscope with automatic CMOS mode matching [C]//Proc of the IEEE International Solid-State Circuits Conference. San Francisco, CA, USA, 2007: 386-387.
[2] Kulygin A, Schmid U, Seidel H. Characterization of a novel micromachined gyroscope under varying ambient pressure conditions [J]. Sens Actuators A: Phys, 2008, 145(1): 52-58.
[3] Li Z, Yang Z, Xiao Z. A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching [J]. Sens Actuators A: Phys, 2000, 83(1): 24-29.
[4] Ashwin A S. Integrated micromechanical resonant sensor for inertial measurement system [D]. Berkeley, CA, USA: School of Electrical Engineering and Computer Science of University of California at Berkeley, 2002.
[5] Wyatt O D. Mechanical analysis and design of vibratory micromachined gyroscopes [D]. Berkeley, CA, USA: School of Mechanical Engineering of University of California at Berkeley, 2001.
[6] Jason K P H. Modeling and identification of the jet propulsion laboratory vibratory rate microgyroscope [D]. Los Angeles: School of Mechanical Engineering of University of California at Los Angeles, 2002.
[7] Fang Jiancheng, Li Jianli, Sheng Wei. Improved temperature error model of silicon MEMS gyroscope with inside frame driving [J]. J Beijing Univ Aerona Astronaut, 2006, 32(11): 1277-1280.(in Chinese)
[8] Shcheglov K, Evans C, Gutierrez R, et al. Temperature dependent characteristics of the JPL silicon MEMS gyroscope [C]//Proceedings of the IEEE Aerospace Conference. Big Sky, MT, USA, 2000: 403-411.