|Table of Contents|

[1] Li Jiapeng, Bi Kedong, Chen Yunfei, Chen Min, et al. Molecular dynamics study of viscosity of aqueous NaCl solutionconfined in nanoscale channels [J]. Journal of Southeast University (English Edition), 2011, 27 (3): 257-260. [doi:10.3969/j.issn.1003-7985.2011.03.006]
Copy

Molecular dynamics study of viscosity of aqueous NaCl solutionconfined in nanoscale channels()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 3
Page:
257-260
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2011-09-30

Info

Title:
Molecular dynamics study of viscosity of aqueous NaCl solutionconfined in nanoscale channels
Author(s):
Li Jiapeng1 Bi Kedong1 Chen Yunfei1 2 Chen Min1 Wang Zhu1(1 Jiangsu Key Laboratory for Design and Fabrication of Micro-Nano Biomedical Instruments Southeast University Nanjing 211189 China)
2 Key Laboratory of MEMS of Educational Ministry, Southeast University, Nanjing 210096, China
Keywords:
nanochannel molecular dynamics simulation vibrating silicon atom shear rate viscosity
PACS:
O351.2
DOI:
10.3969/j.issn.1003-7985.2011.03.006
Abstract:
A physical model of bulk-nanochannel-bulk with buffer baths is built up using nonequilibrium molecular dynamics(MD)simulation to study the effects of vibrating silicon atoms on the viscosity of aqueous NaCl solutions confined in the nanochannel. The simulation is performed under different moving speeds of the upper wall, different heights and different surface charge densities in the nanochannel. The simulation results indicate that with the increase in the surface charge density and the decrease in the nanochannel height and the shear rate, the vibration effect of silicon atoms on the shear viscosity of the confined fluid in the nanochannel cannot be ignored. Compared with still silicon atoms, the vibrating silicon atoms result in the decrease in the viscosity when the height of the nanochannel is less than 0.8 nm and the shear rate is less than 1.0×1011 s-1, and the effect of the vibrating silicon atoms on the shear viscosity is significant when the shear rate is small. This is due to the fact that the vibrating silicon atoms weaken the interactions between the counter-ions(Na+)and the charged surface.

References:

[1] Freund J B. Electro-osmosis in a nanometer-scale channel studied by atomistic simulation[J]. J Chem Phys, 2002, 116(5):2194-2200.
[2] Qiao R, Aluru N R. Ion concentrations and velocity profiles in nanochannel electro-osmotic flows[J]. J Chem Phys, 2003, 118(10):4692-4701.
[3] Qiao R, Aluru N R. Charge inversion and flow reversal in a nanochannel electro-osmotic flow[J]. Phys Rev Lett, 2004, 92(19):198301.
[4] Besteman K, Zevenbergen M A G, Lemay S G. Charge inversion by multivalent ions: dependence on dielectric constant and surface-charge density[J]. Phys Rev E, 2005, 72(6): 061501.
[5] Zhu W, Singer S J, Zheng Z, et al. Electro-osmotic flow of a model electrolyte[J]. Phys Rev E, 2005, 71(4):041501.
[6] Greberg H, Kjellander R. Charge inversion in electric double layers and effects of different sizes for counterions and coions[J]. J Chem Phys, 1998, 108(7): 2940-2953.
[7] Urbakh M, Klafter J, Gourdon D, et al. The nonlinear nature of friction[J]. Nature, 2004, 430(6999): 525-528.
[8] Zhu Y X, Granick S. Viscosity of interfacial water[J]. Phys Rev Lett, 2001, 87(9): 096104.
[9] Raviv U, Klein J. Fluidity of bound hydration layers[J]. Science, 2002, 297(5586):1540-1543.
[10] Israelachvili J N. Measurement of the viscosity of liquids in very thin-films[J]. J Colloid Interf Sci, 1986, 110(3):263-271.
[11] Israelachvili J N. Intermolecular and surface forces [M]. 3rd ed. New York: Oxford, 2011:341-380.
[12] Hu H W, Carson G A, Granick S. Relaxation-time of confined liquids under shear[J]. Phys Rev Lett, 1991, 66(21): 2758-2761.
[13] Raviv U, Laurat P, Klein J. Fluidity of water confined to subnanometre films[J]. Nature, 2001, 413(6851):51-54.
[14] Raviv U, Perkin S, Laurat P, et al. Fluidity of water confined down to subnanometer films[J]. Langmuir, 2004, 20(13):5322-5332.
[15] Sakuma H, Otsuki K, Kurihara K. Viscosity and lubricity of aqueous NaCl solution confined between mica surfaces studied by shear resonance measurement[J]. Phys Rev Lett, 2006, 96(4):046104.
[16] Major R C, Houston J E, McGrath M J, et al. Viscous water meniscus under nanoconfinement[J]. Phys Rev Lett, 2006, 96(17):177803.
[17] Li T D, Gao J P, Szoszkiewicz R, et al. Structured and viscous water in subnanometer gaps[J]. Phys Rev B, 2007, 75(11):115415.
[18] Lee S H, Rossky P J. A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular-dynamics simulation study[J]. J Chem Phys, 1994, 100(4): 3334-3345.
[19] Sakuma H, Tsuchiya T, Kawamura K, et al. Local behavior of water molecules on brucite, talc, and halite surfaces: a molecular dynamics study[J]. Molecular Simulation, 2004, 30(15):861-871.
[20] Leng Y, Cummings P T. Fluidity of hydration layers nanoconfined between mica surfaces[J]. Phys Rev Lett, 2005, 94(2):026101.
[21] Leng Y S, Cummings P T. Hydration structure of water confined between mica surfaces[J]. J Chem Phys, 2006, 124(7):074711.
[22] Leng Y S, Cummings P T. Shear dynamics of hydration layers[J]. J Chem Phys, 2006, 125(10):104701.
[23] Martini A, Liu Y, Snurr R Q, et al. Molecular dynamics characterization of thin film viscosity for EHL simulation[J]. Tribol Lett, 2006, 21(3): 217-225.
[24] Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water[J]. J Chem Phys, 1983, 79(2):926-935.
[25] Miyamoto S, Kollman P A. SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models[J]. J Comput Chem, 1992, 13(8): 952-962.
[26] Koneshan S, Rasaiah J C, Lynden-Bell R M, et al. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25℃[J]. J Phys Chem B, 1998, 102(21): 4193-4204.
[27] Allen M P, Tildesley D J. Computer simulation of Liquids[M]. New York: Oxford, 1987:152-154.
[28] Yeh I C, Berkowitz M L. Ewald summation for systems with slab geometry[J]. J Chem Phys, 1999, 111(7): 3155-3162.
[29] Berendsen H J C, Postma J P M, Vangunsteren W F, et al.Molecular-dynamics with coupling to an external bath[J]. J Chem Phys, 1984, 81(8): 3684-3690.
[30] Stillinger F H, Weber T A. Computer-simulation of local order in condensed phases of silicon[J]. Phys Rev B, 1985, 31(8): 5262-5271.
[31] Xu D Y, Leng Y S, Chen Y F, et al. Water structures near charged(100)and(111)silicon surfaces[J]. Appl Phys Lett, 2009, 94(20):201901.
[32] Poppe H, Cifuentes A, Kok W T. Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis[J]. Anal Chem, 1996, 68(5): 888-893.

Memo

Memo:
Biographies: Li Jiapeng(1981—), male, graduate; Chen Yunfei(corresponding author), male, doctor, professor, yunfeichen@seu.edu.cn.
Foundation items: The National Basic Research Program of China(973 Program)(No.2006CB300404), the National Natural Science Foundation of China(No.50875047, 50676019), the Natural Science Foundation of Jiangsu Province(No.BK2006510, BK2008201).
Citation: Li Jiapeng, Bi Kedong, Chen Yunfei, et al. Molecular dynamics study of viscosity of aqueous NaCl solution confined in nanoscale channels. [J].Journal of Southeast University(English Edition), 2011, 27(3):257-260.[doi:10.3969/j.issn.1003-7985.2011.03.006]
Last Update: 2011-09-20