[1] Miotello A, Kelly R. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature [J]. Appl Phys A, 1999, 69(7): 67-73.
[2] Kelly R, Miotello A. On the mechanisms of target modification by ion beams and laser pulses [J]. Nucl Instrum Methods Phys Res B, 1997, 122(3): 374-400.
[3] Bulgakova N M, Bulgakov A V. Pulsed laser ablation of solids: transition from normal vaporization to phase explosion [J]. Appl Phys A, 2001, 73(2): 199-208.
[4] Zhigelei L V. Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation[J]. Appl Phys A, 2003, 76(3): 339-350.
[5] Pakhomov A V, Thompson M S, Gregory D A. Laser-induced phase explosions in lead, tin and other elements: microsecond regime and UV-emission [J]. J Phys D: Appl Phys, 2003, 36(17): 2067-2075.
[6] Bulgakova N M, Stoian R, Rosenfeld A, et al. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion [J]. Appl Phys A, 2005, 81(2): 345-356.
[7] Herrmann R F W, Gerlach J, Campbell E E B. Molecular dynamics simulation of laser ablation of silicon [J]. Nucl Instrum Methods Phys Res B, 1997, 122(3): 401-404.
[8] Herrmann R W F, Gerlach J, Campbell E E B. Ultrashort pulse laser ablation of silicon: an MD simulation study [J]. Appl Phys A, 1998, 66(1): 35-42.
[9] Stoian R, Ashkenasi D, Rosenfeld A, et al. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3[J]. Phys Rev B, 2000, 62(19): 13167-13173.
[10] Costache F, Reif J. Femtosecond laser induced Coulomb explosion from calcium fluoride [J]. Thin Solid Films, 2004, 453/454: 334-339.
[11] Marine W, Bulgakova N M, Patrone L, et al. Insight into electronic mechanisms of nanosecond-laser ablation of silicon [J]. J Appl Phys, 2008, 103(9): 094902-094912.
[12] Henyk M, Costache F, Reif J. Femtosecond laser ablation from sodium chloride and barium fluoride [J]. Appl Surf Sci, 2002, 186(1/2/3/4): 381-384.
[13] Stoian R, Rosenfeld A, Ashkenasi D, et al. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation [J]. Phys Rev Lett, 2002, 88(9): 097603.
[14] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics [J]. Phys Rev B, 1996, 53(4): 1749-1761.
[15] Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses [J]. Phys Rev Lett, 1995, 74(12): 2248-2251.
[16] Gamaly E G, Rode A V, Luther-Davies B, et al. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics [J]. Phys Plasmas, 2002, 9(3): 949-957.
[17] Du D, Liu X, Korn G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs [J]. Appl Phys Lett, 1994, 64(23): 3071-3073.
[18] Islam M R, Saalmann U, Rost J M. Kinetic energy of ions after Coulomb explosion of clusters induced by an intense laser pulse [J]. Phys Rev A, 2006, 73(4): 041201.
[19] Brewczyk M, Rzazewski K, Clark C W. Multielectron dissociative ionization of molecules by intense laser radiation [J]. Phys Rev Lett, 1997, 78(2): 191-194.
[20] Brewczyk M, Clark C W, Lewenstein M, et al. Stepwise explosion of atomic clusters induced by a strong laser field [J]. Phys Rev Lett, 1998, 80(9): 1857-1860.
[21] Fann W S, Storz R, Tom H W K, et al. Electron thermalization in gold [J]. Phys Rev B, 1992, 46(20): 13592-13595.
[22] Sun C K, Vallee F, Acioli L H, et al. Femtosecond-tunable measurement of electron thermalization in gold [J]. Phys Rev B, 1994, 50(20): 15337-15348.
[23] Bejan D, Raseev G. Nonequilibrium electron distribution in metals [J]. Phys Rev B, 1997, 55(7): 4250-4256.
[24] Rethfeld B, Kaiser A, Vicanek M, et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation [J]. Phys Rev B, 2002, 65(21): 214303.
[25] Keldysh L V. Ionization in the field of a strong electromagnetic wave [J]. Sov Phys JETP, 1965, 20(5): 1307-1314.
[26] Jasapara J, Nampoothiri A V V, Rudolph W, et al. Femtosecond laser pulse induced breakdown in dielectric thin films [J]. Phys Rev B, 2001, 63(4): 045117.
[27] Hinton F L. Simulating Coulomb collisions in a magnetized plasma [J]. Phys Plasmas, 2008, 15(4): 042501.
[28] Clark S P. Handbook of physical constants [M]. Geological Society of America, 1966.
[29] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics [J]. Phys Rev B, 1996, 53(4): 1749-1761.
[30] Drits M E. Properties of elements: handbook[M]. Moscow: Metallurgiya, 1985.(in Russian)
[31] Jia T Q, Xu Z Z, Li X X, et al. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers [J]. Phys Rev Lett, 2003, 82(24): 4382-4384.
[32] Jiang L, Tsai H L. Repeatable nanostructures in dielectrics by femtosecond laser pulse trains [J]. Appl Phys Lett, 2005, 87(15): 151104.