|Table of Contents|

[1] Lin Xiaohui, Ren Weisong,. Theoretical analysis of ultra-short pulsed laser ablationof SiO2 material based on a Coulomb explosion model [J]. Journal of Southeast University (English Edition), 2011, 27 (3): 261-265. [doi:10.3969/j.issn.1003-7985.2011.03.007]
Copy

Theoretical analysis of ultra-short pulsed laser ablationof SiO2 material based on a Coulomb explosion model()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 3
Page:
261-265
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2011-09-30

Info

Title:
Theoretical analysis of ultra-short pulsed laser ablationof SiO2 material based on a Coulomb explosion model
Author(s):
Lin Xiaohui Ren Weisong
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Keywords:
ultra-short pulsed laser Coulomb explosion non-equilibrium distribution material ablation
PACS:
O434;TH161
DOI:
10.3969/j.issn.1003-7985.2011.03.007
Abstract:
Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.

References:

[1] Miotello A, Kelly R. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature [J]. Appl Phys A, 1999, 69(7): 67-73.
[2] Kelly R, Miotello A. On the mechanisms of target modification by ion beams and laser pulses [J]. Nucl Instrum Methods Phys Res B, 1997, 122(3): 374-400.
[3] Bulgakova N M, Bulgakov A V. Pulsed laser ablation of solids: transition from normal vaporization to phase explosion [J]. Appl Phys A, 2001, 73(2): 199-208.
[4] Zhigelei L V. Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation[J]. Appl Phys A, 2003, 76(3): 339-350.
[5] Pakhomov A V, Thompson M S, Gregory D A. Laser-induced phase explosions in lead, tin and other elements: microsecond regime and UV-emission [J]. J Phys D: Appl Phys, 2003, 36(17): 2067-2075.
[6] Bulgakova N M, Stoian R, Rosenfeld A, et al. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion [J]. Appl Phys A, 2005, 81(2): 345-356.
[7] Herrmann R F W, Gerlach J, Campbell E E B. Molecular dynamics simulation of laser ablation of silicon [J]. Nucl Instrum Methods Phys Res B, 1997, 122(3): 401-404.
[8] Herrmann R W F, Gerlach J, Campbell E E B. Ultrashort pulse laser ablation of silicon: an MD simulation study [J]. Appl Phys A, 1998, 66(1): 35-42.
[9] Stoian R, Ashkenasi D, Rosenfeld A, et al. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3[J]. Phys Rev B, 2000, 62(19): 13167-13173.
[10] Costache F, Reif J. Femtosecond laser induced Coulomb explosion from calcium fluoride [J]. Thin Solid Films, 2004, 453/454: 334-339.
[11] Marine W, Bulgakova N M, Patrone L, et al. Insight into electronic mechanisms of nanosecond-laser ablation of silicon [J]. J Appl Phys, 2008, 103(9): 094902-094912.
[12] Henyk M, Costache F, Reif J. Femtosecond laser ablation from sodium chloride and barium fluoride [J]. Appl Surf Sci, 2002, 186(1/2/3/4): 381-384.
[13] Stoian R, Rosenfeld A, Ashkenasi D, et al. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation [J]. Phys Rev Lett, 2002, 88(9): 097603.
[14] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics [J]. Phys Rev B, 1996, 53(4): 1749-1761.
[15] Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses [J]. Phys Rev Lett, 1995, 74(12): 2248-2251.
[16] Gamaly E G, Rode A V, Luther-Davies B, et al. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics [J]. Phys Plasmas, 2002, 9(3): 949-957.
[17] Du D, Liu X, Korn G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs [J]. Appl Phys Lett, 1994, 64(23): 3071-3073.
[18] Islam M R, Saalmann U, Rost J M. Kinetic energy of ions after Coulomb explosion of clusters induced by an intense laser pulse [J]. Phys Rev A, 2006, 73(4): 041201.
[19] Brewczyk M, Rzazewski K, Clark C W. Multielectron dissociative ionization of molecules by intense laser radiation [J]. Phys Rev Lett, 1997, 78(2): 191-194.
[20] Brewczyk M, Clark C W, Lewenstein M, et al. Stepwise explosion of atomic clusters induced by a strong laser field [J]. Phys Rev Lett, 1998, 80(9): 1857-1860.
[21] Fann W S, Storz R, Tom H W K, et al. Electron thermalization in gold [J]. Phys Rev B, 1992, 46(20): 13592-13595.
[22] Sun C K, Vallee F, Acioli L H, et al. Femtosecond-tunable measurement of electron thermalization in gold [J]. Phys Rev B, 1994, 50(20): 15337-15348.
[23] Bejan D, Raseev G. Nonequilibrium electron distribution in metals [J]. Phys Rev B, 1997, 55(7): 4250-4256.
[24] Rethfeld B, Kaiser A, Vicanek M, et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation [J]. Phys Rev B, 2002, 65(21): 214303.
[25] Keldysh L V. Ionization in the field of a strong electromagnetic wave [J]. Sov Phys JETP, 1965, 20(5): 1307-1314.
[26] Jasapara J, Nampoothiri A V V, Rudolph W, et al. Femtosecond laser pulse induced breakdown in dielectric thin films [J]. Phys Rev B, 2001, 63(4): 045117.
[27] Hinton F L. Simulating Coulomb collisions in a magnetized plasma [J]. Phys Plasmas, 2008, 15(4): 042501.
[28] Clark S P. Handbook of physical constants [M]. Geological Society of America, 1966.
[29] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics [J]. Phys Rev B, 1996, 53(4): 1749-1761.
[30] Drits M E. Properties of elements: handbook[M]. Moscow: Metallurgiya, 1985.(in Russian)
[31] Jia T Q, Xu Z Z, Li X X, et al. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers [J]. Phys Rev Lett, 2003, 82(24): 4382-4384.
[32] Jiang L, Tsai H L. Repeatable nanostructures in dielectrics by femtosecond laser pulse trains [J]. Appl Phys Lett, 2005, 87(15): 151104.

Memo

Memo:
Biography: Lin Xiaohui(1960—), male, associate professor, lxh60@yahoo.com.cn.
Citation: Lin Xiaohui, Ren Weisong. Theoretical analysis of ultra-short pulsed laser ablation of SiO2 material based on a Coulomb explosion model [J].Journal of Southeast University(English Edition), 2011, 27(3):261-265.[doi:10.3969/j.issn.1003-7985.2011.03.007]
Last Update: 2011-09-20