[1] Benotti M J, Trenholm R A, Holady J C, et al. Pharmaceuticals and endocrine disruption compounds in US drinking water [J]. Environmental Science and Technology, 2009, 43(3): 597-603.
[2] Esplugas S, Bila D M, Krause L G T, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals(EDCS)and pharmaceutical and personal care products(PPCPs)in water effluents [J]. Journal of Hazardous Materials, 2007, 149(3): 631-642.
[3] Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling [J]. Water Research, 2007, 41(18): 4164-4176.
[4] Weiss K, Schüssler W, Porzelt M. Sulfamethazine and flubendazole in seepage water after the sprinkling of manured areas [J]. Chemosphere, 2008, 72(9): 1292-1297.
[5] Hu L, Flanders P M, Miller P L, et al. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis [J]. Water Research, 2007, 41(12): 2612-2626.
[6] Ternes T A, Bonerz M, Herrmann N, et al. Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances [J].Chemosphere, 2007, 66(5): 894-904.
[7] Ye S, Zhang K, Yao Z, et al. Occurrence of sulfonamide pharmaceuticals in water column around Bohai Sea [J]. Journal of Dalian Maritime University, 2007, 33(2): 71-74.(in Chinese)
[8] Jiang L, Chen S, Yang R, et al. Occurrence of antibiotics in the aquatic environment of the Changjiang delta, China [J]. Environmental Chemistry, 2008, 27(3): 371-374.
[9] Raich-Montiu J, Folch J, Compañó R, et al. Analysis of trace levels of sulfonamides in the surface water and soil samples by liquid chromatography-fluorescence [J]. Journal of Chromatography A, 2007, 1172(2): 186-193.
[10] Sakthivel S, Shankar M V, Palnichamy M, et al. Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst [J].Water Research, 2004, 38(13): 3001-3008.
[11] Zhang Xu, Wu Feng, Wang Zhiping, et al. Photocatalytic degradation of 4, 4’-biphenol in TiO2 suspension in the presence of cyclodextrin: a trinity integrate mechanism [J]. Journal of Molecular Catalysis A: Chemical, 2009, 301(1/2): 134-139.
[12] Asiltürk M, Sayilkan F, Arpaç E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradation [J]. Journal of Molecular Catalysis A: Chemical, 2009, 203(1): 64-71.
[13] Baran W, Makowski A, Wardas W. The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspension [J]. Chemosphere, 2003, 53(1): 87-95.
[14] Baran W, Adamek E, Sobczak A. The comparison of photocatalytic activity of Fe-salts, TiO2 and TiO2/FeCl3 during the sulfanilamide degradation process [J]. Catalysis Communication, 2009, 10(6): 811-814.
[15] Braun A M, Maurette M. Photochemical technology [M]. John Wiley & Sons, 1991.
[16] Katsumata H, Matsuba K, Kaneco S, at al. Degradation of carbofuran in aqueous soluation by Fe(Ⅲ)aquacomplexes as effective photocatalysts [J]. Journal of Photochemistry Photobiology A: Chemistry, 2007, 170(3): 239-245.
[17] Měšt’ánková H, Kry’sa J, Jirkovsky’ J, et al. The influence of Fe(Ⅲ)speciation on supported TiO2 efficiency: example of monuron photocatalytic degradation [J]. Applied Catalysis B: Environmental, 2005, 58(3/4): 185-191.
[18] Kaniou S, Pitarakis K, Barlagianni I, et al. Photocatalytic oxidation of sulfamethazine [J]. Chemosphere, 2005, 60(3): 372-380.