[1] Baik C, Kim D, Kang M S, et al. Organic dyes with a novel anchoring group for dye-sensitized solar cell applications [J]. J Photochem Photobiol A Chem, 2009, 201(2/3): 168-174.
[2] McCall K L, Jennings J R, Wang H X, et al. Novel ruthenium bipyridyl dyes with S-donor ligands and their application in dye-sensitized solar cells [J]. J Photochem Photobiol A Chem, 2009, 202(2/3): 196-204.
[3] Grätzel M. Recent advances in sensitized mesoscopic solar cells [J]. Acc Chem Res, 2009, 42(11): 1788-1798.
[4] Tian H N, Yang X, Chen R K, et al. Phenothiazine derivatives for efficient organic dye-sensitized solar cells [J]. Chem Commun, 2007, 36: 3741-3743.
[5] He J J, Benkö G, Korodi F, et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode [J]. J Am Chem Soc, 2002, 124(17): 4922-4932.
[6] Chen C Y, Lu H, Wu C G, et al. New ruthenium complex-es containing oligoalkylthiophene-substituted 1, 10-phenanthroline for nanocrystalline dye-sensitized solar cells [J]. Adv Funct Mater, 2007, 17(1): 29-36.
[7] Lever A P, Pickens S R, Minor P C, et al. Charge-transfer spectra of metallophthalocyanines: correlation with electrode potentials [J]. J Am Chem Soc, 1981, 103(23): 6800-6806.
[8] Yao Q H, Meng F S, Li F Y, et al. Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode [J]. J Mater Chem, 2003, 13(5): 1048-1053.
[9] Giribabu L, Kumar C V, Reddy V G, et al. Unsymmetrical alkoxy zinc phthalocyanine for sensitization of nanocrystalline TiO2 films[J]. Sol Energy Mater Sol Cells, 2007, 91(17): 1611-1617.
[10] Tsaryova O. Darstellung und untersuchung der photochemischen und photosensibilisierenden eigenschaften verschieden substituierter Zn(Ⅱ)-Phthalocyanine [D]. Bremen, Germany: Universität Bremen, 2006.
[11] Hagfeldt A, Grätzel M. Molecular photovoltaics [J]. Acc Chem Res, 2000, 33(5): 269-277.
[12] Kroops S E, Barnes P, Regan B, et al, Kinetic competition in a coumarin dye-sensitized solar cell: injection and recombination limitations upon device performance [J]. J Phys Chem C, 2010, 114(17): 8054-8061.
[13] Ino D, Watanabe K, Takagi N, et al. Electron transfer dynamics from organic adsorbate to a semiconductor surface: zinc phthalocyanine on TiO2(110)[J]. J Phys Chem B, 2005, 109(38): 18018-18024.
[14] Gao W Y, Kahna A. Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study [J]. Appl Phys Lett, 2001, 79(24): 4040-4042.