[1] Allen G C, El-Turki A, Hallam K R, et al. Role of NO2 and SO2 in degradation of limestone [J]. British Corrosion Journal, 2000, 35(1): 35-48.
[2] Ballari M M, Yu Q L, Brouwers H J H. Experimental study of NO and NO2 degradation by photocatalytically active concrete [J]. Catalysis Today, 2010, 161(1): 175-180.
[3] Radojevic M. Reduction of nitrogen oxides in flue gases [J]. Environmental Pollution, 1998, 102(1): 685-689.
[4] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
[5] Augugliaro V, Voluccia S, Loddo V, et al. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation [J]. Applied Catalysis B: Environmental, 1999, 20(1): 15-27.
[6] Takeda N, Torimoto T, Sampath S, et al. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde [J]. Journal of Physical Chemistry, 1995, 99(24): 9986-9991.
[7] Shigwedha N, Hua Z Z, Chen J. A new photon kinetic-measurement based on the kinetics of electron-hole pairs in photodegradation of textile wastewater using the UV-H2O2FS-TiO2 process [J]. Journal of Environmental Sciences, 2007, 19(3): 367-373.
[8] Ibusuki T, Takeuchi K. Removal of low concentration of nitrogen oxides through photoassisted heterogeneous catalysis [J]. Journal of Molecular Catalysis, 1994, 88(1): 93-102.
[9] Devahasdin S, Fan C, Li K Y, et al. TiO2 photocatalytic oxidation of nitric oxide transient behavior and reaction kinetics [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156(1/2/3): 161-170.
[10] Mahalakshmi M, Priya S V, Arabindoo B, et al. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2 [J]. Journal of Hazardous Materials, 2009, 161(1): 336-343.
[11] Maggos T, Plassais A, Bartzis J G, et al. Photocatalytic degradation of NOxx in a pilot street canyon configuration using TiO2-mortar panels [J]. Environmental Monitoring and Assessment, 2008, 136(1/2/3): 35-44.
[12] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results [J]. Chemical Reviews, 1995, 95(3): 735-758.
[13] Laufsa S, Burgeth G, Duttlinger W, et al. Conversion of nitrogen oxides on commercial photocatalytic dispersion paints [J]. Atmospheric Environment, 2010, 44(19): 2341-2349.
[14] Zhao Y, Han J, Zhao L, et al. Experimental studies on simultaneous desulfurization and denitrification of flue gas by photocatalysis with TiO2 [J]. Journal of Power Engineering, 2007, 27(3): 411-414.(in Chinese)
[15] Negishi N, Takeuchi K, Ibusuki T. Surface structure of the TiO2 thin film photocatalyst [J]. Journal of Materials Science, 1998, 33(24): 5789-5794.
[16] Subramanian V, Wolf E, Kamat P V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?[J]. Journal of Physical Chemistry, 2001, 105(46): 11439-11446.
[17] Tomkiewicz M. Scaling properties in photocatalysis [J]. Catalysis Today, 2000, 58(2/3): 115-123.
[18] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental application of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96.