[1] Bashashati A, Fatourechi M, Ward R K, et al. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals [J]. J Neural Eng, 2007, 4(2): R32-R57.
[2] Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology: a review of the first international meeting [J]. IEEE Trans Neural Syst Rehabil Eng, 2000, 8(2): 164-173.
[3] Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed [J]. Nature, 1999, 398(25): 297-298.
[4] Kübler A, Kotchoubey B, Kaiser J, et al. Brain-computer communication: unlocking the locked in [J]. Psychol Bull, 2001, 127(3): 358-375.
[5] Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control [J]. Clin Neurophysiol, 2002, 113: 767-791.
[6] Haynes J D, Rees G. Decoding mental states from brain activity in humans [J]. Nat Rev Neurosci, 2006, 7: 523-534.
[7] Wold S, Esbensen K, Geladi P. Principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3): 37-52.
[8] Hyvarinen A, Karhunen J, Oja E. Independent component analysis: algorithms and applications [J]. Neural Computation, 2001, 13(4/5): 411-430.
[9] Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust EEG single-trial analysis [J]. IEEE Signal Processing Magazine, 2008, 25(1):41-56.
[10] Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [C]//IEEE Signal Processing Society Workshop. Madison, WI, USA, 1999:41-48.
[11] Cortes C, Vapnik V. Support-vector networks [J]. Machine Learning, 1995, 20(3): 273-297.
[12] Li T, Wang J, Wu X, et al. The estimate and application of posterior probability: based on kernel logistic regression [J]. Pattern Recognition and Artificial Intelligence, 2007, 19(6): 689-695.
[13] Watanabe K, Kurita T. Locality preserving multi-nominal logistic regression [C]//19th International Conference on Pattern Recognition(ICPR 2008). Tampa, FL, USA, 2008: 1-4.
[14] Aseervatham S, Antoniadis A, Gaussier E, et al. A sparse version of the ridge logistic regression for large-scale text categorization [J]. Pattern Recognition Letters, 2011, 32(2): 101-106.
[15] Chen Z, Haykin S. On different facets of regularization theory [J]. Neural Computation, 2002, 14(12): 2791-2846.
[16] Belkin M, Niiyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples [J]. The Journal of Machine Learning Research, 2006, 7(12): 2399-2434.
[17] He X, Niyoqi P. Locality preserving projections [D]. Chicago, IL, USA: University of Chicago, 2005.
[18] Krishnapuram B, Carin L, Figueiredo M A T, et al. Sparse multinomial logistic regression: fast algorithms and generalization bounds [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6):957-968.
[19] Ryali S, Supekar K, Abrams D A, et al. Sparse logistic regression for whole-brain classification of fMRI data [J]. Neuroimage, 2010, 51(2): 752-764.
[20] Bielza C, Robles V, Larranaga P. Regularized logistic regression without a penalty term: An application to cancer classification with microarray data [J]. Expert Systems with Applications, 2011, 38(5): 5110-5118.
[21] Poggio T, Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks [J]. Science, 1990, 247(4945): 978-982.
[22] Cawley G C, Talbot N L C, Girolami M. Sparse multinomial logistic regression via Bayesian l1 regularisation [C]//Advances in Neural Information Processing Systems. Vancouver, CA, USA, 2007.
[23] Meier L, Geer S V D, Buhlmann P. The group lasso for logistic regression [J]. Journal of the Royal Statistical Society: Series B , 2008, 70(1): 53-71.
[24] Zou H, Hastie T. Regularization and variable selection via the elastic net [J]. Journal of the Royal Statistical Society: Series B , 2005, 67(2): 301-320.
[25]Tomioka R, Müller K R. A regularized discriminative framework for EEG analysis with application to brain—computer interface [J]. Neuroimage, 2010, 49(1): 415-432.
[26] He X, Yan S, Hu Y, et al. Face recognition using Laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
[27] Kurita T, Watanabe K, Otsu N. Logistic discriminant analysis [C]//IEEE International Conference on Systems, Man and Cybernetics. San Antonio, USA, 2009: 2167-2172.
[28] He X, Cai D, Shao Y, et al. Laplacian regularized Gaussian mixture model for data clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 23(9): 1406-1418.
[29] Blankertz B, Curio G, Müller K R. Classifying single trial EEG: towards brain computer interfacing [C]//Advances in Neural Information Processing Systems. Vancouver, CA, USA, 2002: 157-164.
[30] Wang H X, Xu J. Local discriminative spatial patterns for movement-related potentials-based EEG classification [J]. Biomedical Signal Processing and Control, 2011, 6(5): 427-431.
[31] Wang Y, Zhang Z, Li Y, et al. BCI competition 2003-data set Ⅳ: an algorithm based on CSSD and FDA for classifying single-trial EEG [J]. IEEE Trans Biomed Eng, 2004, 51(6): 1081-1086.