|Table of Contents|

[1] Wang Xiaoying, Wang Xiaoning, Zhang Xiangyi, Chen FentianZhu Kehui, et al. Alcohol dehydrogenase coexisted solid-stateelectrochemiluminescence biosensor for detection of p53 gene [J]. Journal of Southeast University (English Edition), 2013, 29 (2): 145-151. [doi:10.3969/j.issn.1003-7985.2013.02.007]
Copy

Alcohol dehydrogenase coexisted solid-stateelectrochemiluminescence biosensor for detection of p53 gene()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 2
Page:
145-151
Research Field:
Biological Science and Medical Engineering
Publishing date:
2013-06-20

Info

Title:
Alcohol dehydrogenase coexisted solid-stateelectrochemiluminescence biosensor for detection of p53 gene
Author(s):
Wang Xiaoying1 Wang Xiaoning2 Zhang Xiangyi1 Chen Fentian1Zhu Kehui1 Yang Ligang1 Tang Meng1
1Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Southeast University, Nanjing 210009, China
2Department of Hematology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
Keywords:
MWNTs-Ru(bpy)2+3 composite solid-state electrochemiluminescence alcohol dehydrogenase wild type p53 sequence muted type p53 sequence cell lysates
PACS:
R113
DOI:
10.3969/j.issn.1003-7985.2013.02.007
Abstract:
An alcohol dehydrogenase(ADH)-coexisted solid-state electrochemiluminescence(ECL)biosensor for sensitive detection of the p53 gene was developed. The electrode modified by multiwalled carbon nanotubes, Ru(bpy)2+3 and polypyrrole(MWNTs-Ru(bpy)2+3-PPy)was prepared to adsorb the ssDNA by electrostatic interactions. Then, the ssDNA recognized the gold nanoparticles(AuNPs)-labeled p53 gene and produced the AuNPs-dsDNA electrode with the AuNPs layer. The AuNPs layer adsorbed the ADH molecules for producing the ECL signal. Thus, the biosensor was based on coupling enzyme substrate reaction with solid-state ECL detection, and it displayed good sensitivity and specificity. The detection limit of the wild type p53 sequence(wtp53)is as low as 0.1 pmol/L and the discrimination is up to 57.1% between the wtp53 and the muted type p53 sequence(mtp53). The amenability of this method to the analyses of p53 from normal and cancer cell lysates is demonstrated. The signal of wtp53 in the MGC-803 gastric cancer cell lysates turns out to be about 61.8% that of the wtp53 in the GES-1 normal gastric mucosal cell lysates, and the concentration of the wtp53 is found to decrease about 59 times. The method is highly complementary to enzyme-linked immunosorbent assay(ELISA), and it holds promise for the diagnosis and management of cancer.

References:

[1] Hofseth L J, Hussain S P, Harris C C. p53: 25 years after its discovery [J]. Trends Pharmacol Sci, 2004, 25(4): 177-181.
[2] Vousden K H, Lane D P. p53 in health and disease [J]. Nat Rev Mol Cell Biol, 2007, 8(4): 275-283.
[3] Hainaut P, Wiman K G. 30 years and a long way into p53 research [J]. Lancet Oncol, 2009, 10(9): 913-919.
[4] Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use [J]. Cold Spring Harb Perspect Biol, 2010, 2(1): a001008-01-a001008-17.
[5] Jiang T, Minunni M, Mascini M. Towards fast and inexpensive molecular diagnostic: the case of p53 [J]. Clin Chim Acta, 2004, 343(1/2): 45-60.
[6] Narayanaswami G, Taylor P D. Site-directed mutagenesis of exon 5 of p53: purification, analysis, and validation of amplicons for DHPLC [J]. Genet Test, 2002, 6(3): 177-184.
[7] Miyajima K, Tamiya S, Oda Y, et al. Relative quantitation of p53 and MDM2 gene expression in leiomyosarcoma; real-time semiquantitative reverse transcription-polymerase chain reaction [J]. Cancer Lett, 2001, 164(2): 177-188.
[8] Van Orsouw N J, Dhanda R K, Rines R D, et al. Rapid design of denaturing gradient-based two-dimensional electrophoretic gene mutational scanning tests [J]. Nucleic Acids Res, 1998, 26(10): 2398-2406.
[9] Wang J X, Zhu X, Tu Q Y, et al. Capture of p53 by electrodes modified with consensus DNA duplexes and amplified voltammetric detection using ferrocene-capped gold nanoparticle/streptavidin conjugates [J]. Anal Chem, 2008, 80(3):769-774.
[10] Zhou H J, Xing D, Zhu D B, et al. Rapid and sensitive detection of point mutation by DNA ligase-based electrochemiluminescence assay [J]. Talanta, 2009, 78(4/5): 1253-1258.
[11] Gupta G, Atanassov P. Electrochemical DNA hybridization assay: enzyme-labeled detection of mutation in p53 gene [J]. Electroanalysis, 2011, 23(7): 1615-1622.
[12] Farjami E, Clima L, Gothelf K, et al. “Off-on” electrochemical hairpin-DNA-based genosensor for cancer diagnostics [J]. Anal Chem, 2011, 83(5):1594-1602.
[13] Raoofa J B, Ojania R, Golabib S M, et al. Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide[J]. Sensor Actuat B Chem, 2011, 157(1): 195-201.
[14] Han S H, Kim S K, Park K, et al. Detection of mutant p53 using field-effect transistor biosensor [J]. Anal Chim Acta, 2010, 665(1):79-83.
[15] Chen C P, Ganguly A, Lu C Y, et al. Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor[J]. Anal Chem, 2011, 83(6): 1938-1943.
[16] Jiang T S, Minunni M, Wilson P, et al. Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor [J]. Biosens Bioelectron, 2005, 20(10): 1939-1945.
[17] Wang Y C, Zhu X, Wu M H, et al. Simultaneous and label-free determination of wild-type and mutant p53 at a single surface plasmon resonance chip preimmobilized with consensus DNA and monoclonal antibody [J]. Anal Chem, 2009, 81(20): 8441-8446.
[18] Qiu L P, Wu Z S, Shen G L, et al. Highly sensitive and selective bifunctional oligonucleotide probe for homogeneous parallel fluorescence detection of protein and nucleotide sequence [J]. Anal Chem, 2011, 83(8): 3050-3057.
[19] Wang X Y, Zhang X Y, He P G, et al. Sensitive detection of p53 tumor suppressor gene using an enzyme-based solid-state electrochemiluminescence sensing platform [J]. Biosens Bioelectron, 2011, 26(8): 3608-3613.
[20] Makmura L, Hamann M, Areopagita A, et al. Development of a sensitive assay to detect reversibly oxidized protein cysteine sulfhydryl groups antioxid [J]. Antioxid Redox Sign, 2001, 3(6): 1105-1118.
[21] Park J K, Yee H J, Lee K S, et al. Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase[J]. Anal Chim Acta, 1999, 390(1/2/3): 83-91.
[22] Cai H, Lee T M H, Hsing I M. Label-free protein recognition using an aptamer-based impedance measurement assay [J]. Sensor Actuat B Chem, 2006, 114(1): 433-437.
[23] Li Y, Qi H L, Peng Y G, et al. Electrogenerated chemiluminescence aptamer-based method for the determination of thrombin incorporating quenching of tris(2, 2′-bipyridine)ruthenium by ferrocene[J]. Electrochem Commun, 2008, 10(9): 1322-1325.

Memo

Memo:
Biography: Wang Xiaoying(1980—), female, doctor, lecturer, wxy@seu.edu.cn.
Foundation items: The National Basic Research Program of China(973 Program)(No.2010CB732404, 2011CB933404), the National Natural Science Foundation of China(No.81172697, 81170492, 81001244), the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092120055), the Foundation of the State Key Laboratory of Bioelectronics of Southeast University.
Citation: Wang Xiaoying, Wang Xiaoning, Zhang Xiangyi, et al. Alcohol dehydrogenase coexisted solid-state electrochemiluminescence biosensor for detection of p53 gene[J].Journal of Southeast University(English Edition), 2013, 29(2):145-151.[doi:10.3969/j.issn.1003-7985.2013.02.007]
Last Update: 2013-06-20