|Table of Contents|

[1] An Liang, Fang Shiliang, Chen Lijun,. Models for amplitude fluctuation of underwater acousticnarrow band signal based on modified modal scintillation index [J]. Journal of Southeast University (English Edition), 2013, 29 (3): 235-241. [doi:10.3969/j.issn.1003-7985.2013.03.002]
Copy

Models for amplitude fluctuation of underwater acousticnarrow band signal based on modified modal scintillation index()
基于修正模式闪烁指数的水声窄带信号幅度波动模型
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 3
Page:
235-241
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2013-09-20

Info

Title:
Models for amplitude fluctuation of underwater acousticnarrow band signal based on modified modal scintillation index
基于修正模式闪烁指数的水声窄带信号幅度波动模型
Author(s):
An Liang Fang Shiliang Chen Lijun
Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China
安良 方世良 陈励军
东南大学水声信号处理教育部重点实验室, 南京 210096
Keywords:
modified modal scintillation index amplitude fluctuation mode filtering Pekeris waveguide
修正模式闪烁指数 幅度波动 简正波模式过滤 Pekeris波导
PACS:
O427.3
DOI:
10.3969/j.issn.1003-7985.2013.03.002
Abstract:
A self-normalized statistic, the modified modal scintillation index(MMSI), is proposed and defined as the variance of the modulus of modal excitation normalized by the square of its expected value over some observation intervals. It is proved in an analytical form that the MMSI is a depth dependent signature and independent of the source level and the source range under the condition of the ideal waveguide, while the classical modal scintillation index(MSI)depends on both the source level and the source range. The MSI and the MMSI in the Pekeris waveguide at 70 Hz are simulated with different source levels and source ranges by the Kraken normal mode model. The simulation results are consistent with the theoretical deduction. The MMSI probability density functions(PDFs)of different normal modes for surface and submerged sources are calculated using the mode filtering methods with the same variations of vertical motions. It is indicated that the PDFs can be used to separate the submerged and the surface sources except for the fourth mode.
提出了一种自归一化的修正模式闪烁指数, 定义为一段观测时间内模式激励函数模的方差与模式激励函数模的数学期望平方的比值.在理想水声波导的条件下, 解析地证明了修正模式闪烁指数是一种与目标深度相关、与目标距离和强度无关的统计量, 而传统的模式闪烁指数与目标距离和强度都相关.利用Kraken简正波模型进行了Pekeris波导中的不同目标强度和距离情况下的模式闪烁指数和修正模式闪烁指数计算仿真, 信号频率为70 Hz.仿真结果与理论推导的结果一致.在相同的目标垂直运动方差情况下, 利用简正波过滤的方法进行了水下目标和水面目标的修正模式闪烁指数概率密度函数的估计.计算结果表明, 除了4号简正波模式外, 其余简正波模式的修正模式闪烁指数概率密度函数可以用来区分水下和水面目标.

References:

[1] Scrimger J A. Signal amplitude and phase fluctuations induced by surface waves in ducted sound propagation [J]. J Acoust Soc Am, 1961, 33(2): 239-247.
[2] Nichols R H, Young H J. Fluctuations in low-frequency acoustic propagation in the ocean [J]. J Acoust Soc Am, 1968, 43(4):716-722.
[3] Urick R J. Models of the amplitude fluctuations of narrow-band signals in the sea [J]. J Acoust Soc Am, 1977, 62(4): 878-887.
[4] Clay G S, Wang Y Y, Shang E C. Sound field fluctuations in a shallow water wave guide [J]. J Acoust Soc Am, 1985, 77(2): 424-428.
[5] Katsnelson B, Grigorev V, Lynch J F. Intensity fluctuations of midfrequency sound signals passing through moving nonlinear internal waves [J]. J Acoust Soc Am, 2008, 124(4): EL78-EL84.
[6] Katsnelson B, Grigorev V, Badiey M, et al. Temporal sound field fluctuations in the presence of internal solitary waves in shallow water [J]. J Acoust Soc Am, 2009, 126(1): EL41-EL48.
[7] Colosi J A, Morozov A K. Statistics of normal mode amplitudes in an ocean with random sound-speed perturbations: cross-mode coherence and mean intensity [J]. J Acoust Soc Am, 2009, 126(3): 1026-1035.
[8] Colosi J A, Duda T F, Morozov A K. Statistics of low-frequency normal-mode amplitudes in an ocean with random sound-speed perturbations: shallow-water environments [J]. J Acoust Soc Am, 2012, 131(2): 1749-1761.
[9] Nair N R, Jacob R, Ajaikumar M P. Acoustic fluctuations in shallow water [C]//Proceedings of the 2011 International Symposium on Ocean Electronics. Kochi, India, 2011:174-177.
[10] Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization [J]. IEEE Communications Magazine, 2009, 47(1): 84-89.
[11] Premus V. Modal scintillation index: a physics-based statistic for acoustic source depth discrimination [J]. J Acoust Soc Am, 1999, 105(4):2170-2180.
[12] Jensen F B, Kuperman W A, Porter M B, et al. Computational ocean acoustics [M]. 2nd ed. New York: Springer, 2011:345-356.
[13] Meyer S L. Data analysis for scientists and engineers [M]. New York: John Wiley & Sons Inc, 1975:286-287.
[14] Etter P C. Underwater acoustic modeling and simulation [M]. 4th ed. Boca Raton: CRC Press, 2013:145-162.

Memo

Memo:
Biography: An Liang(1979—), male, doctor, lecturer, anliang@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.11104029).
Citation: An Liang, Fang Shiliang, Chen Lijun. Models for amplitude fluctuation of underwater acoustic narrow band signal based on modified modal scintillation index[J].Journal of Southeast University(English Edition), 2013, 29(3):235-241.[doi:10.3969/j.issn.1003-7985.2013.03.002]
Last Update: 2013-09-20