|Table of Contents|

[1] Li Chen, Chen Jing, Lei Wei, Xia Jun, et al. Stable zinc oxide field emitter-based backlight unitfor liquid crystal display [J]. Journal of Southeast University (English Edition), 2013, 29 (3): 247-251. [doi:10.3969/j.issn.1003-7985.2013.03.004]
Copy

Stable zinc oxide field emitter-based backlight unitfor liquid crystal display()
一种基于稳定的氧化锌场致发射体的液晶显示器背光源
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 3
Page:
247-251
Research Field:
Electromagnetic Field and Microwave Technology
Publishing date:
2013-09-20

Info

Title:
Stable zinc oxide field emitter-based backlight unitfor liquid crystal display
一种基于稳定的氧化锌场致发射体的液晶显示器背光源
Author(s):
Li Chen Chen Jing Lei Wei Xia Jun Wang Qilong
School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
李晨 陈静 雷威 夏军 王琦龙
东南大学电子科学与工程学院, 南京 210096
Keywords:
field emission zinc oxide backlight unit response time
场致电子发射 氧化锌 背光源 响应时间
PACS:
TN873
DOI:
10.3969/j.issn.1003-7985.2013.03.004
Abstract:
A zinc oxide(ZnO)field emitter-based backlight unit for liquid crystal display with a gated structure is fabricated by screen-printing processes. The measured anode field emission current density reaches 0.62 mA/cm2 when the applied gate voltage is 570 V. Part of the anode current is contributed by the secondary electron emission which is excited from the MgO layer inside the gate apertures on the gate plate. The average emission current density and luminance are 0.47 mA/cm2 and 1250 cd/m2, respectively, with a fluctuation of about 10% during the 1000 min measurement. By a finite element method calculation, the gated structure shows a good electron beam focusing property. The driving performance of the backlight unit is characterized by SPICE simulation tools and measured by the oscilloscope. Stable field emission, line-by-line scanning and fast response characteristics of the backlight unit indicate its promising application in the liquid crystal displays.
利用丝网印刷的方法制备了一种基于氧化锌发射体的三极结构场致发射背光源器件.当栅极电压达到570 V时, 阳极场发射电流密度达到0.62 mA/cm2, 部分阳极电流的产生是由于在栅极孔洞内侧的氧化镁受到电子激发产生了二次电子发射.在1000 min的测试过程中, 平均场发射电流密度和器件亮度分别为0.47 mA/cm2 和1250 cd/m2, 波动小于10%.有限元模拟计算的结果表明, 栅极结构具有良好的电子束聚焦性能.利用SPICE仿真模拟和示波器测量的方法考察了该背光源的驱动性能.稳定的场发射性能、逐行扫描的特性和高响应速度预示了基于该三极结构的场致发射器件在液晶显示器的中具有良好的应用前景.

References:

[1] Guo P S, Chen T, Chen Y W, et al. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters[J]. Solid-State Electronics, 2008, 52(6):877-881.
[2] Kang M S, Yun Y J, Lee J W, et al. Improvement of interpixel uniformity in carbon nanotube field emission display by luminance correction circuit[J]. IEEE Transactions on Electron Devices, 2008, 55(3):768-773.
[3] Shang S G, Zhu C C, Liu W H. Fabrication and properties of Al2O3/Cu/InSnO3 multilayer cathode electrodes in carbon nanotube field emission display[J]. Thin Solid Films, 2008, 516(15):5127-5132.
[4] Lee C Y, Tseng T Y, Li S Y, et al. Electrical characterizations of a controllable field emission triode based on low temperature synthesized ZnO nanowires[J]. Nanotechnology, 2006, 17(1):83-88.
[5] Zhao Q, Xu X Y, Song X F, et al. Enhanced field emission from ZnO nanorods via thermal annealing in oxygen[J]. Applied Physics Letters, 2006, 88(3):033102.
[6] Lei W, Zhang X, Lou C, et al. An improved planar triode with ZnO nanopin field emitters[J]. IEEE Electron Device Letters, 2007, 28(8):688-690.
[7] Li C, Lei W, Zhang X B, et al. Fabrication and field emission properties of regular hexagonal flowerlike ZnO nanowhiskers[J]. Journal of Vacuum Science and Technology, B: Microelectronics Processing and Phenomena, 2006, 25(2):590-593.
[8] Lei D, Zeng L Y, Xia Y X, et al. Study on field enhancement of a normal-gated field emission nanowire cold cathode[J]. Acta Physica Sinica, 2007, 56(11):6616-6622.
[9] Lan Y C, Lee C T, Hu Y, et al. Simulation study of carbon nanotube field emission display with under-gate and planar-gate structures[J]. Journal of Vacuum Science and Technology, B: Microelectronics Processing and Phenomena, 2004, 22(3):1244-1249.
[10] Zeng F G, Zhu C C, Liu X H, et al. A novel mechanical approach to improve the field emission characteristics of printed CNT films[J]. Materials Letters, 2006, 60(19):2399-2402.
[11] Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth[J]. Applied Physics Letters, 2004, 85(8):1407-1409.
[12] Tang L Q, Zhou B, Tian Y M, et al. Synthesis and surface hydrophobic functionalization of ZnO nanocrystals via a facile one-step solution method[J]. Chemical Engineering Journal(Lausanne), 2008, 139(3):642-648.
[13] Lei W, Zhang X B, Wang B P, et al. A stable field-emission light source with ZnO nanoemitters[J]. IEEE Electron Device Letters, 2008, 29(5):452-455.
[14] Someya J, Sugiura H. Evaluation of liquid-crystal-display motion blur with moving-picture response time and human perception[J]. Journal of the Society for Information Display, 2007, 15(1):79-86.
[15] Lee S, Im W B, Kang J H, et al. Low temperature burnable carbon nanotube paste component for carbon nanotube field emitter backlight unit[J]. Journal of Vacuum Science and Technology, B: Microelectronics Processing and Phenomena, 2004, 23(2):745-748.
[16] Jang H S, Kang J H, Won Y H, et al. Mechanism for strong yellow emission of Y3Al5O12: Ce3+ phosphor under electron irradiation for the application to field emission backlight units[J]. Applied Physics Letters, 2007, 90(7):071908.
[17] Uhm H S, Choi E H, Cho G S. Secondary electron emission from MgO protective layer by Auger neutralization of ions[J]. Applied Physics Letters, 2009, 94(3):031501.
[18] Tuinenga P W. SPICE—a guide to circuit simulation and analysis using PSPICE[M]. New Jersey: Prentice-Hall, 1992.
[19] Lee J, Jeong T, Yua S G, et al. Thickness effect on secondary electron emission of MgO layers[J]. Applied Surface Science, 2001, 174(1):62-69.
[20] Li Q H, Wan Q, Chen Y J, et al. Stable field emission from tetrapod-like ZnO nanostructures[J]. Applied Physics Letters, 2004, 85(4):636-638.
[21] Lee W, Patel K, Pedram M. White-LED backlight control for motion-blur reduction and power minimization in large LCD TVs[J]. Journal of the Society for Information Display, 2009, 17(1):37-45
[22] Zhu W. Vacuum microelectronics[M]. New York: John Wiley & Sons, 2001.
[23] Huh J, Kim G T, Lee J S, et al. A direct measurement of the local resistances in a ZnO tetrapod by means of impedance spectroscopy: The role of the junction in the overall resistance[J]. Applied Physics Letters, 2008, 93(4):042111.
[24] Nakamura Y, Harada T, Kuribara H, et al. Nonlinear current-voltage characteristics with negative resistance observed at ZnO-ZnO single-contacts[J]. Journal of the American Ceramic Society, 1999, 82(11):3069-3074.

Memo

Memo:
Biography: Li Chen(1982—), male, doctor, lecturer, tolichen@gmail.com.
Foundation items: The National Basic Research Program of China(973 Program)(No.2013CB328803), the National Natural Science Foundation of China(No.51002031), the Ph.D. Programs Foundation of Ministry of Education of China(No.20100092120022), the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A302, 2013AA011004).
Citation: Li Chen, Chen Jing, Lei Wei, et al.Stable zinc oxide field emitter-based backlight unit for liquid crystal display[J].Journal of Southeast University(English Edition), 2013, 29(3):247-251.[doi:10.3969/j.issn.1003-7985.2013.03.004]
Last Update: 2013-09-20