[1] Guo P S, Chen T, Chen Y W, et al. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters[J]. Solid-State Electronics, 2008, 52(6):877-881.
[2] Kang M S, Yun Y J, Lee J W, et al. Improvement of interpixel uniformity in carbon nanotube field emission display by luminance correction circuit[J]. IEEE Transactions on Electron Devices, 2008, 55(3):768-773.
[3] Shang S G, Zhu C C, Liu W H. Fabrication and properties of Al2O3/Cu/InSnO3 multilayer cathode electrodes in carbon nanotube field emission display[J]. Thin Solid Films, 2008, 516(15):5127-5132.
[4] Lee C Y, Tseng T Y, Li S Y, et al. Electrical characterizations of a controllable field emission triode based on low temperature synthesized ZnO nanowires[J]. Nanotechnology, 2006, 17(1):83-88.
[5] Zhao Q, Xu X Y, Song X F, et al. Enhanced field emission from ZnO nanorods via thermal annealing in oxygen[J]. Applied Physics Letters, 2006, 88(3):033102.
[6] Lei W, Zhang X, Lou C, et al. An improved planar triode with ZnO nanopin field emitters[J]. IEEE Electron Device Letters, 2007, 28(8):688-690.
[7] Li C, Lei W, Zhang X B, et al. Fabrication and field emission properties of regular hexagonal flowerlike ZnO nanowhiskers[J]. Journal of Vacuum Science and Technology, B: Microelectronics Processing and Phenomena, 2006, 25(2):590-593.
[8] Lei D, Zeng L Y, Xia Y X, et al. Study on field enhancement of a normal-gated field emission nanowire cold cathode[J]. Acta Physica Sinica, 2007, 56(11):6616-6622.
[9] Lan Y C, Lee C T, Hu Y, et al. Simulation study of carbon nanotube field emission display with under-gate and planar-gate structures[J]. Journal of Vacuum Science and Technology, B: Microelectronics Processing and Phenomena, 2004, 22(3):1244-1249.
[10] Zeng F G, Zhu C C, Liu X H, et al. A novel mechanical approach to improve the field emission characteristics of printed CNT films[J]. Materials Letters, 2006, 60(19):2399-2402.
[11] Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth[J]. Applied Physics Letters, 2004, 85(8):1407-1409.
[12] Tang L Q, Zhou B, Tian Y M, et al. Synthesis and surface hydrophobic functionalization of ZnO nanocrystals via a facile one-step solution method[J]. Chemical Engineering Journal(Lausanne), 2008, 139(3):642-648.
[13] Lei W, Zhang X B, Wang B P, et al. A stable field-emission light source with ZnO nanoemitters[J]. IEEE Electron Device Letters, 2008, 29(5):452-455.
[14] Someya J, Sugiura H. Evaluation of liquid-crystal-display motion blur with moving-picture response time and human perception[J]. Journal of the Society for Information Display, 2007, 15(1):79-86.
[15] Lee S, Im W B, Kang J H, et al. Low temperature burnable carbon nanotube paste component for carbon nanotube field emitter backlight unit[J]. Journal of Vacuum Science and Technology, B: Microelectronics Processing and Phenomena, 2004, 23(2):745-748.
[16] Jang H S, Kang J H, Won Y H, et al. Mechanism for strong yellow emission of Y3Al5O12: Ce3+ phosphor under electron irradiation for the application to field emission backlight units[J]. Applied Physics Letters, 2007, 90(7):071908.
[17] Uhm H S, Choi E H, Cho G S. Secondary electron emission from MgO protective layer by Auger neutralization of ions[J]. Applied Physics Letters, 2009, 94(3):031501.
[18] Tuinenga P W. SPICE—a guide to circuit simulation and analysis using PSPICE[M]. New Jersey: Prentice-Hall, 1992.
[19] Lee J, Jeong T, Yua S G, et al. Thickness effect on secondary electron emission of MgO layers[J]. Applied Surface Science, 2001, 174(1):62-69.
[20] Li Q H, Wan Q, Chen Y J, et al. Stable field emission from tetrapod-like ZnO nanostructures[J]. Applied Physics Letters, 2004, 85(4):636-638.
[21] Lee W, Patel K, Pedram M. White-LED backlight control for motion-blur reduction and power minimization in large LCD TVs[J]. Journal of the Society for Information Display, 2009, 17(1):37-45
[22] Zhu W. Vacuum microelectronics[M]. New York: John Wiley & Sons, 2001.
[23] Huh J, Kim G T, Lee J S, et al. A direct measurement of the local resistances in a ZnO tetrapod by means of impedance spectroscopy: The role of the junction in the overall resistance[J]. Applied Physics Letters, 2008, 93(4):042111.
[24] Nakamura Y, Harada T, Kuribara H, et al. Nonlinear current-voltage characteristics with negative resistance observed at ZnO-ZnO single-contacts[J]. Journal of the American Ceramic Society, 1999, 82(11):3069-3074.