[1] Rogers Y. Icons at the interface: their usefulness [J]. Interacting with Computers, 1989, 1(1): 105-117.
[2] Lin R. A study of visual features for icon design [J]. Design Studies, 1994, 15(2): 185-197.
[3] Huang S M, Shieh K K, Chi C F. Factors affecting the design of computer icons [J]. International Journal of Industrial Ergonomics, 2002, 29(4): 211-218.
[4] Lindberg T, Näsänen R, Müller K. How age affects the speed of perception of computer icons [J]. Displays, 2006, 27(4): 170-177.
[5] Chan A, MacLean K, McGrenere J. Designing haptic icons to support collaborative turn-taking [J]. International Journal of Human-Computer Studies, 2008, 66(5): 333-355.
[6] Salman Y B, Cheng H I, Patterson P E. Icon and user interface design for emergency medical information systems: a case study [J]. International Journal of Medical Informatics, 2012, 81(1): 29-35.
[7] Posner M I. Orienting of attention [J]. Quart Experiment Psychol, 1980, 32(1): 3-25.
[8] Girelli M, Luck S J. Are the same attentional mechanism used to detect visual search targets defined by color, orientation, and motion?[J]. Cognitive Neuroscience, 1997, 9(2): 238-258.
[9] Kusak G, Grune K, Hagendorf H, et al. Updating of working memory in a running memory task: an event-related potential study [J]. Intern Psychophysiology, 2000, 39(1): 51-65.
[10] Missonnier P, Deiber M P, Gold G, et al. Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment [J]. Neuroscience, 2007, 150(2): 346-356.
[11] Rader S K, Holmes J L, Golob E J. Auditory event-related potentials during a spatial working memory task [J]. Clinical Neurophysiology, 2008, 119(5): 1176-1189.
[12] Yi Y, Friedman D. Event-related potential(ERP)measures reveal the timing of memory selection processes and proactive interference resolution in working memory [J]. Brain Research, 2011, 1411: 41-56.
[13] Krigolson O E, Heinekey H, Kent C M, et al. Cognitive load impacts error evaluation within medial-frontal cortex [J]. Brain Research, 2012, 1430: 62-67.
[14] Isreal J B, Wickens C D, Donchin E. The dynamics of P300 during dual-task performance [J]. Progress in Brain Research, 1980, 54: 416-421.
[15] Luck S J. Sources of dual-task interference: evidence from human electrophysiology [J]. Psychological Science, 1998, 9(3): 223-227.
[16] Kok A. On the utility of P300 amplitude as a measure of processing capacity [J]. Psychophysiology, 2001, 38(3): 557-577.
[17] Polich J. Updating P300: an integrative theory of P300a and P300b [J]. Clinical Neurophysiology, 2007, 118(10): 2128-2148.
[18] Luck S J, Hillyard S A. Electrophysiological correlates of feature analysis during visual search [J]. Psychophysiology, 1994, 31(3): 291-308.
[19] Potts G F, Tucker D M. Frontal evaluation and posterior representation in target detection [J]. Cognitive Brain Research, 2001, 11(1): 147-156.
[20] Zhao L, Li J. Visual mismatch negativity elicited by facial expressions under non-attentional conditions [J]. Neuroscience Letters, 2006, 410(2): 126-131.
[21] Huang Y Q, Li X, Li R L. Design human-computer interface [M]. Beijing: Beijing Institute of Technology Press, 2007: 100-110.(in Chinese)
[22] Wei, J H, Luo Y J. The theory and technology of event-related potentials [M]. Beijing: Science Press, 2010:52-55.(in Chinese)
[23] Smith E E, Jonides J, Koeppe R A. Dissociation verbal and spatial working memory using PET [J]. Cerebral Cortex, 1996, 6(1): 11-20.
[24] Wang H L, Feng T Y, Suo T, et al. The process of counterfactual thinking after decision-making: evidence from an ERP study [J]. Chinese Science Bulletin, 2010, 55(12): 1113-1121.
[25] Miller G A. The magic number seven, plus or minus two: Some limits on our capacity for processing information [J]. Psychological Review, 1956, 63(2): 81-97.
[26] Cowan N, Saults J S, Morey C C. Development of working memory for verbal-spatial associations [J]. Journal of Memory and Language, 2006, 55(2): 274-289.
[27] Unsworth N, Spillers G J. Working memory capacity: attention control, secondary memory, or both? A direct test of the dual-component model [J]. Journal of Memory and Language, 2010, 62(4): 392-406.
[28] Pimperton H, Nation K. Suppressing irrelevant information from working memory: evidence for domain-specific deficits in poor comprehenders [J]. Journal of Memory and Language, 2010, 62(4): 380-391.
[29] van der Ham I J, van Strien J W, Oleksiak A, et al. Temporal characteristics of working memory for spatial relations: an ERP study [J]. International Journal of Psychophysiology, 2010, 77(2): 83-94.
[30] Shucard J L, Tekok-Kilic A, Shiels K, et al. Stage and load effects on ERP topography during verbal and spatial working memory [J]. Brain Research, 2009, 1254: 49-62.
[31] Agam Y, Sekuler R. Interactions between working memory and visual perception: an ERP/EEG study [J]. NeuroImage, 2007, 36(3): 933-942.
[32] Hajcak G, Moser J S, Simons R F. Attending to affect: appraisal strategies modulate the electro cortical response to arousing pictures [J]. Emotion, 2006, 6(3): 517-522.
[33] Kutas M, Mccarthy G, Donchin E. Augmenting mental chronometry: P300 as a measure of stimulus evaluation time [J]. Science, 1977, 197(4305): 792-795.
[34] Kutas M, Hillyard S A. Reading senseless sentences: brain potentials reflect semantic incongruity [J]. Science, 1980, 207(4427): 203-205.
[35] Biedermann I, Ju G. Surface versus edge-based determinants of visual recognition [J]. Cognitive Psychology, 1988, 20(1): 38-64.