|Table of Contents|

[1] Pan Jinlong, Wang Luping, Yuan Fang, Huang Yifang, et al. Flexural behaviors of FRP strengthened corroded RC beams [J]. Journal of Southeast University (English Edition), 2014, 30 (1): 77-83. [doi:10.3969/j.issn.1003-7985.2014.01.015]
Copy

Flexural behaviors of FRP strengthened corroded RC beams()
FRP加固锈蚀钢筋混凝土梁的受弯性能分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
30
Issue:
2014 1
Page:
77-83
Research Field:
Civil Engineering
Publishing date:
2014-03-31

Info

Title:
Flexural behaviors of FRP strengthened corroded RC beams
FRP加固锈蚀钢筋混凝土梁的受弯性能分析
Author(s):
Pan Jinlong1, Wang Luping1, Yuan Fang1, Huang Yifang2
1Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2China United Engineering Corporation, Hangzhou 310022, China
潘金龙1, 王路平1, 袁方1, 黄毅芳2
1东南大学混凝土及预应力混凝土教育部重点实验室, 南京210096; 2中国联合工程公司, 杭州310022
Keywords:
corroded reinforced concrete beam FRP(fiber reinforced polymer) strengthening numerical analysis flexural behavior
锈蚀钢筋混凝土梁 FRP 加固 数值分析 受弯性能
PACS:
TU375
DOI:
10.3969/j.issn.1003-7985.2014.01.015
Abstract:
The flexural behavior of eight FRP(fiber reinforced polymer)strengthened RC(reinforced concrete)beams with different steel corrosion rates are numerically studied by Ansys finite element software. The influences of the corrosion rate on crack pattern, failure mechanism, ultimate strength, ductility and deformation capacity are also analyzed. Modeling results show that the beams with low corrosion rates fail by the crushing of the concrete in the compression zone. For the beams with medium corrosion rates, the bond slip between the concrete and the longitudinal reinforcement occurs after steel yielding, and the beams finally fail by the debonding of the FRP plates. For the beams with high corrosion rates, the bond slip occurs before steel yielding, and the beams finally fail by the crushing of the concrete in the compression zone. The higher the corrosion rates of the longitudinal reinforcement, the more the carrying capacity of FRP strengthened RC beams reduces. The carrying capacity of RCB-1(the corrosion rate is 0)is 115 kN, and the carrying capacity of RCB-7(the corrosion rate is 20%)is 42 kN. The deformation capacity of FRP strengthened corroded RC beams is higher than that of FRP strengthened uncorroded RC beams. The ultimate deflection of RCB-1 and RCB-7 are 20 mm and 35 mm, respectively, and the ultimate deflection of RCB-5(the corrosion rate is 10%)reaches 60 mm.
采用Ansys有限元软件对8根不同锈蚀率的FRP片材加固钢筋混凝土梁的受弯性能进行数值分析, 研究纵筋锈蚀率对FRP加固梁的裂纹开展、破坏模式、承载能力以及延性和变形能力的影响.研究结果表明:低钢筋锈蚀率的梁发生受压区混凝土压碎破坏;中等锈蚀率的梁钢筋屈服后, 钢筋与混凝土界面发生黏结滑移, 最后FRP剥离破坏;高锈蚀率的梁钢筋没有达到屈服强度便发生黏结滑移, 最后发生受压区混凝土压碎破坏.钢筋锈蚀越严重, FRP加固钢筋混凝土梁的承载力降低得越多.试件RCB-1(锈蚀率为0)的承载力为115 kN, 而试件RCB-7(锈蚀率为20%)的承载力仅为42 kN.与FRP加固未锈蚀的钢筋混凝土梁相比, FRP加固锈蚀钢筋混凝土梁的变形能力较高.试件RCB-1和试件RCB-7的最大跨中挠度分别为20 mm和35 mm, 而试件RCB-5(锈蚀率为10%)的最大跨中挠度达到了60 mm.

References:

[1] Mehta P K. Reducing the environmental impact of concrete [J]. Concrete International, 2001, 23(10): 61-66.
[2] Ritchie P A, Thomas D A, Lu L W, et al. External reinforcement of concrete beams using fiber reinforced plastics [J]. ACI Structural Journal, 1991, 88(4): 490-500.
[3] Hollaway L C. The evolution of and the way forward for advanced polymer composites in the civil infrastructure [J]. Construction and Building Materials, 2003, 17(6): 365-378.
[4] Chajes M J, Thomson T A Jr, Januszka T F, et al. Flexural strengthening of concrete beams using externally bonded composite materials [J]. Construction and Building Materials, 1994, 8(3): 191-201.
[5] Teng J G, Chen J F, Smith S T, et al. FRP: strengthened RC structures [M]. Weinheim, Germany: Wiley-VCH, 2002.
[6] Smith S T, Teng J G. FRP-strengthened RC beams. Ⅰ: review of debonding strength models [J]. Engineering Structures, 2002, 24(4): 385-395.
[7] Wang X G, Gu X L, Zhang W P. Flexural stiffness of corroded reinforced concrete beams strengthened with carbon fiber composite sheets [J]. Journal of Building Structures, 2009, 30(5): 169-176.
[8] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50010—2010 Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010.(in Chinese)
[9] Xi’an University of Architecture and Technology. CECS220:2007 Standard for durability assessment of concrete structure [S]. Beijing: China Architecture and Building Press, 2007.(in Chinese)
[10] Comité euro-international du béton. CEB-FIP model code 1990: design code [S]. London: FIB-Féd. Int. du Béton, 1993.
[11] Leung C K, Tung W K. Three-parameter model for debonding of FRP plate from concrete substrate [J]. Journal of Engineering Mechanics, 2006, 132(5): 509-518.

Memo

Memo:
Biography: Pan Jinlong(1976—), male, doctor, professor, jinlongp@gmail.com.
Foundation items: The National Natural Science Foundation of China(No.51278118), Scientific and Technological Research Project of Ministry of Education(No.113028A), the Natural Science Foundation of Jiangsu Province(No.BK2012756), the Program for Special Talents in Six Fields of Jiangsu Province(No.2011-JZ-010).
Citation: Pan Jinlong, Wang Luping, Yuan Fang, et al. Flexural behaviors of FRP strengthened corroded RC beams[J].Journal of Southeast University(English Edition), 2014, 30(1):77-83.[doi:10.3969/j.issn.1003-7985.2014.01.015]
Last Update: 2014-03-20