|Table of Contents|

[1] Hu Mingxing, Wu Jiang, Zhu Xuan,. Exploration of the spatial pattern of urban residential land usewith geographically weighted regression technique:a case study of Nanjing, China [J]. Journal of Southeast University (English Edition), 2015, 31 (1): 149-156. [doi:10.3969/j.issn.1003-7985.2015.01.025]
Copy

Exploration of the spatial pattern of urban residential land usewith geographically weighted regression technique:a case study of Nanjing, China()
基于地理加权回归的南京市居住用地分布规律研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
31
Issue:
2015 1
Page:
149-156
Research Field:
Architecture
Publishing date:
2015-03-30

Info

Title:
Exploration of the spatial pattern of urban residential land usewith geographically weighted regression technique:a case study of Nanjing, China
基于地理加权回归的南京市居住用地分布规律研究
Author(s):
Hu Mingxing1 Wu Jiang2 Zhu Xuan3
1School of Architecture, Southeast University, Nanjing 210096, China
2Zhejiang Urban and Rural Planning Design Institute, Hangzhou 310007, China
3School of Earth, Atmosphere and Environment, Monash University, VIC 3800, Australia
胡明星1 吴江2 朱选3
1东南大学建筑学院, 南京210096; 2浙江省城乡规划设计研究院, 杭州310007; 3School of Earth, Atmosphere and Environment, Monash University, VIC 3800, Australia
Keywords:
urban residential land use GIS(geographic information system) multiple linear regression geographically weighted regression
居住用地 GIS 多元线性回归 地理加权回归
PACS:
TU984.11
DOI:
10.3969/j.issn.1003-7985.2015.01.025
Abstract:
As the traditional methods and technical means cannot meet the quantitative research needs of the urban land use patterns, quantitative research methods for the urban land use pattern are established via the GIS(geographic information system)technique combined with the related theories and models. Taking the city of Nanjing as an example, a spatial database of urban land use and other environmental and socio-economic data is constructed. A multiple linear regression model is developed to determine the statistically significant factors affecting the residential land use distributions. To explain the spatial variations of urban land use patterns, the geographically weighted regression(GWR)is employed to establish spatial associations between these significant factors and the distribution of urban residential land use. The results demonstrate that the GWR can provide an effective approach to the exploration of the urban land use spatial patterns and also provide useful spatial information for planning residential development and other types of urban land use.
针对传统方法和技术手段难以满足城市用地格局定量研究需要的不足, 建构了基于GIS 技术与相关理论和模型方法相结合的城市用地格局定量研究方法.以南京市为例, 建立居住用地及其影响因子空间数据库.在此基础上, 运用多元回归模型进行全局估算, 确定对现状居住用地统计显著的影响指标因子.然后建立现状居住用地和统计显著的影响指标因子地理加权回归模型, 对居住用地空间分布进行定量模拟和分析.研究结果表明, CWR能提供一种有效的城市土地利用空间格局研究方法, 并为城市土地利用规划提供有效的空间信息.

References:

[1] Bardo J W, Hartman J J. Urban sociology: a systematic introduction [M]. Itasca, IL, USA: FE Peacock Publisher, 1982.
[2] Goodall B. The eeconomics of urban areas[M]. New York: Pergamon Press, 1972.
[3] Dipasquale D, Wheaton W C. Urban economics and real estate markets[M]. Prentice Hall, 1996.
[4] Capozza D R, Helsley R W. The fundamentals of land prices and urban growth[J]. Journal of Urban Economics, 1989, 26(3): 295-306.
[5] Wheaton W C. Urban residential growth under perfect foresight[J]. Journal of Urban Economics, 1982, 12(1): 1-21.
[6] Webber M M. The urban place and the nonplace urban realm[C]//Explorations into Urban Structure. Philadelphia: University of Philadelphia Press, 1964:79-153.
[7] Young K. Urban politics: an overview [C]//Essay on the Study of Urban Politics. London: Macmillan, 1975:87.
[8] Harvey D. Class monopoly rent, finance capital and the urban revolution[J]. Regional Studies, 1974, 8(3/4):239-255.
[9] Form W H. The place of social structure in the determination of land use: some implications for a theory of urban ecology[J]. Social Forces, 1954, 32(4): 317-323.
[10] Williams O P. Urban politics and urban ecology[C]//Essay on the Study of Urban Politics. London: Macmillan, 1975.
[11] Zeng Z M. Exploration of the factors affecting the land use pattern of the established residential areas[J]. Chinese and Overseas Architecture, 2009, 6: 78-81.
[12] Zhang L, Li X, Zhang J L. A study on residential location and residential space differentiation based on the ecological niche theory [J]. Progress in Geography, 2010, 29(12): 1548-1554.
[13] Jiao H F, Lu Z. Study on the residential locations of Wuhu city[J]. Scientia Geographica Sinica, 2010, 30(3):336-342.
[14] Almeida C M, Batty M, Monteiro A M V, et al. Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation[J]. Computers, Environment and Urban Systems, 2003, 27(5):481-509.
[15] Barredo J I, Kasanko M., McCormick N, et al. Modeling dynamic spatial processes: simulation of urban future scenarios through cellular automata[J]. Landscape and Urban Planning, 2003, 64:145-160.
[16] Batty M. Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals[M]. Cambridge: The MIT Press, 2007.
[17] Guan Q, Wang L, Clarke K. An artificial neural network based constrained CA model for simulating urban growth[J]. Cartography and Geographic Information Science, 2005, 32: 369-380.
[18] Xie H, Li B. Driving forces analysis of land-use pattern changes based on logistic regression model in the farming-pastoral zone: a case study of Ongiud Banner, Inner Mongolia[J]. Geographical Research, 2008, 27(2): 294-304.
[19] Gao J, Zhang Y. Incorporating spectral data into logistic regression model to classify land cover: a case study in Mt. Qomolangma(Everest)National Nature Preserve[J]. International Journal of Geographical Information Science, 2012, 26(10):1845-1862.
[20] Syartinilia, Tsuyuki S. GIS-based modeling of Javan Hawk-Eagle distribution using logistic and autologistic regression models[J]. Biological Conservation, 2008, 141(3):756-769.
[21] Fotheringham A S, Brunsdon C, Charlton M. Geographically weighted regression: the analysis of spatially varying relationships[M]. John Wiley & Sons, 2003.
[22] Luo J, Wei Y H D. Modeling spatial variations of urban growth patterns in Chinese cities: the case of Nanjing[J]. Landscape and Urban Planning, 2009, 91(2): 51-64.
[23] Xu H, Li S. Binary logistic regression analysis on the influence factors to physical fitness of Jiangsu preschool children[J]. Journal of Sports and Science, 2008, 29(1): 73-75.
[24] Páez A, Suzuki J. Transportation impacts on land use change: an assessment considering neighborhood effects[J]. Journal of the Eastern Asia Society for Transportation Studies, 2001, 4: 47-59.
[25] Páez A. Exploring contextual variations in land use and transport analysis using a probit model with geographical weights[J]. Journal of Transport Geography, 2006, 14(3): 167-176.

Memo

Memo:
Biography: Hu Mingxing(1968—), male, doctor, professor, hmxglx@126.com.
Foundation item: The National Natural Science Foundation of China(No.51378099).
Citation: Hu Mingxing, Wu Jiang, Zhu Xuan. Exploration of the spatial pattern of urban residential land use with geographically weighted regression technique: a case study of Nanjing, China[J].Journal of Southeast University(English Edition), 2015, 31(1):149-156.[doi:10.3969/j.issn.1003-7985.2015.01.025]
Last Update: 2015-03-20