|Table of Contents|

[1] Sun Rongyue, Li Yingjie,. Synthesis of highly reactive sorbent from industrial wastesand its CO2 capture capacity [J]. Journal of Southeast University (English Edition), 2015, 31 (2): 209-214. [doi:10.3969/j.issn.1003-7985.2015.02.009]
Copy

Synthesis of highly reactive sorbent from industrial wastesand its CO2 capture capacity()
基于钙基废弃物的高活性吸收剂合成及其循环捕集CO2性能
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
31
Issue:
2015 2
Page:
209-214
Research Field:
Chemistry and Chemical Engineering
Publishing date:
2015-06-20

Info

Title:
Synthesis of highly reactive sorbent from industrial wastesand its CO2 capture capacity
基于钙基废弃物的高活性吸收剂合成及其循环捕集CO2性能
Author(s):
Sun Rongyue1 2 Li Yingjie1
1School of Energy and Power Engineering, Shandong University, Jinan 250061, China
2School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
孙荣岳1 2 李英杰1
1山东大学能源与动力工程学院, 济南 250061; 2南京工程学院能源与动力工程学院, 南京 211167
Keywords:
carbide slag synthetic CO2 sorbent CO2 capture
电石渣 合成CO2吸收剂 CO2捕集
PACS:
TQ534
DOI:
10.3969/j.issn.1003-7985.2015.02.009
Abstract:
A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthesis method. The results show that the synthetic sorbent exhibits a much higher CO2 capture capacity compared with carbide slag. The CO2 capture capacity and the carbonation conversion of the synthetic sorbent are 0.38 g/g and 0.70 after 50 cycles, which are 1.8 and 2.1 times those of carbide slag. The average carbonation conversion and the CO2 capture efficiency of the synthetic sorbent are higher than those of carbide slag with the same sorbent flow ratios. The required sorbent flow ratios are lower for synthetic sorbent to achieve the same CO2 capture efficiency compared with carbide slag. With the same sorbent flow ratio and CO2 capture efficiency, the energy requirement in calciner for the synthetic sorbent is less than that for carbide slag.
利用一种典型的钙基废弃物电石渣作为CaO源合成CO2吸收剂.该高活性吸收剂由电石渣、九水硝酸铝和甘油水溶液经燃烧合成法合成.结果表明, 该合成吸收剂表现出明显好于电石渣的CO2捕集性能.50次循环后, 合成吸收剂的CO2吸收量和碳酸化转化率为0.38 g/g和0.70, 分别是电石渣相同循环次数时的1.8和2.1倍.当吸收剂补充率相同时, 合成吸收剂的平均碳酸化转化率和CO2捕集效率均高于电石渣.为取得相同的CO2捕集效率, 合成吸收剂所需吸收剂的补充率小于电石渣.当吸收剂补充率和CO2捕集效率相同时, 用合成吸收剂作为CO2吸收剂时煅烧炉内所需的能量小于用电石渣作为CO2吸收剂时所需能量.

References:

[1] Li Y J, Sun R Y, Liu C T, et al. CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles [J]. Int J Greenhouse Gas Control, 2012, 9:117-123.
[2] Miró L, Navarro M E, Suresh P, et al. Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage(TES)[J]. Appl Energy, 2014, 113:1261-1268.
[3] Sharma V K, Fortuna F, Mincarini M, et al. Disposal of waste tyres for energy recovery and safe environment [J]. Appl Energy, 2000, 65(1/2/3/4):381-394.
[4] Sanna A, Dri M, Hall M R, et al. Waste materials for carbon capture and storage by mineralisation(CCSM)—a UK perspective [J]. Appl Energy, 2012, 99:545-554.
[5] Bobicki E R, Liu Q, Xu Z, et al. Carbon capture and storage using alkaline industrial wastes [J]. Prog Energy Combust Sci, 2012, 38(2):302-320.
[6] Valverde J M, Sanchez-Jimenez P E, Perez-Maqueda L A, et al. Role of crystal structure on capture by limestone derived CaO subjected to carbonation/recarbonation/calcination cycles at Ca-looping conditions [J]. Appl Energy, 2014, 125:264-275.
[7] Lin S Y, Harada M, Suzuki Y, et al. Process analysis for hydrogen production by reaction integrated novel gasification(HyPr-RING)[J]. Energy Convers Manage, 2005, 46(6):869-880.
[8] Liu W, An H, Qin C, et al. Performance enhancement of calcium oxide sorbents for cyclic CO2 capture—a review [J]. Energy Fuels, 2012, 26(5):2751-2567.
[9] Ridha F N, Manovic V, Macchi A, et al. The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived Al(OH)3 binder [J]. Appl Energy, 2012, 92:415-420.
[10] Zhang M, Peng Y, Sun Y, et al. Preparation of CaO-Al2O3 sorbent and CO2 capture performance at high temperature [J]. Fuel, 2013, 111:636-642.
[11] Zhou Z, Qi Y, Xie M, et al. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance [J]. Chem Eng Sci, 2012, 74:172-180.
[12] Chen H, Zhao C, Yu W. Calcium-based sorbent doped with attapulgite for CO2 capture [J]. Appl Energy, 2013, 112:67-74.
[13] Chen H C, Zhao C S, Yang Y M, et al. CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation [J]. Appl Energy, 2012, 91:334-340.
[14] García E, Laca M, Pérez E, et al. New class of acetal derived from glycerin as a biodiesel fuel component [J]. Energy Fuels, 2008, 22(6): 4274-4280.
[15] Liu C T. Cyclic carbonation characteristics of modified carbide slag as a CO2 sorbent in high temperature [D]. Jinan: School of Energy and Power Engineering, Shandong University, 2014.(in Chinese)
[16] Li Y J, Zhao C S, Chen H C, et al. CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle [J]. Energy, 2011, 36(3):1590-1598.
[17] Abanades J C. The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 [J]. Chem Eng J, 2002, 90(3):303-306.

Memo

Memo:
Biographies: Sun Rongyue(1986—), male, graduate; Li Yingjie(corresponding author), male, doctor, associate professor, liyj@sdu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51376003).
Citation: Sun Rongyue, Li Yingjie.Synthesis of highly reactive sorbent from industrial wastes and its CO2 capture capacity[J].Journal of Southeast University(English Edition), 2015, 31(2):209-214.[doi:10.3969/j.issn.1003-7985.2015.02.009]
Last Update: 2015-06-20