|Table of Contents|

[1] Zhou TongchiCheng XuLi NijunXu QinjunZhou LinWu Zhenyang,. Action recognition using a hierarchy of feature groups [J]. Journal of Southeast University (English Edition), 2015, 31 (3): 327-332. [doi:10.3969/j.issn.1003-7985.2015.03.005]
Copy

Action recognition using a hierarchy of feature groups()
分层特征组的行为识别
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
31
Issue:
2015 3
Page:
327-332
Research Field:
Computer Science and Engineering
Publishing date:
2015-09-20

Info

Title:
Action recognition using a hierarchy of feature groups
分层特征组的行为识别
Author(s):
Zhou TongchiCheng XuLi NijunXu QinjunZhou LinWu Zhenyang
School of Information Science and Engineering, Southeast University, Nanjing 210096, China
周同驰, 程旭, 李拟珺, 徐勤军, 周琳, 吴镇扬
东南大学信息科学与工程学院, 南京210096
Keywords:
action recognition coherent motion pattern feature groups part-based representation
行为识别 连贯的运动模式 特征组 部位表示
PACS:
TP391.4
DOI:
10.3969/j.issn.1003-7985.2015.03.005
Abstract:
To improve the recognition performance of video human actions, an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-temporal domains according to the properties of human body movement. First, the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features, then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features. After pooling the features with the same label to generate part-based representation, the visual word responses within one large scale volume are collected as video object representation. On the benchmark KTH(Kungliga Tekniska Högskolan)and UCF(University of Central Florida)-sports action datasets, the experimental results show that the proposed method enhances the representative and discriminative power of action features, and improves recognition rates. Compared with other related literature, the proposed method obtains superior performance.
为提高视频人体行为识别的性能, 提出了一种分层建模行为的方法.该分层模型根据人体运动的属性概述不同时空域的行为内容.首先, 利用时间梯度并结合连贯的运动模式约束提取稳定、密集的运动特征作为点特征;然后, 采用自适应尺度核的mean-shift 聚类算法标定这些特征.具有同一标签的特征组通过最大池运算产生身体部分表示后, 累积大尺度的视频体内视觉词响应作为视频对象的表示.在基准的KTH 和UCF-sports行为数据库上, 实验结果表明所提方法增强了行为特征的代表性和判别能力, 同时提高了识别率.与其他相关文献相比, 所提方法获得了优越的识别性能.

References:

[1] Kovashka A, Grauman K. Learning a hierarchy of discriminative space-time neighborhood features for human action recognition [C]//Proc of the International Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA, 2010: 2046-2053.
[2] Lan T, Wang Y, Mori G. Discriminative figure-centric models for joint action localization and recognition [C]//Proc of the International Conference on Computer Vision. Colorado, USA, 2011:2003-2010.
[3] Hu Q, Qin L, Huang Q, et al. Action recognition using spatial-temporal context [C]//Proc of the 20th International Conference of Pattern Recognition. Istanbul, Turkey, 2010:1521-1524.
[4] Yuan C, Hu W, Wang H, et al. Spatio-temporal proximity distribution kernels for action recognition [C]//Proc of the International Conference of Acoustics, Speech and Signal Processing. Dallas, TX, USA, 2010:1126-1129.
[5] Song Y, Morency L P, Davis R. Action recognition by hierarchical sequence summarization [C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA, 2013:3562-3569.
[6] Jain M, Jegou H, Bouthemy P. Better exploiting motion for better action recognition [C]//Proc of the International Conference of Computer Vision and Pattern Recognition. Portland, OR, USA, 2013:2555-2562.
[7] Chakraborty B, Holte M B, Moeslund T B, et al. Selective spatio-temporal interest points [J]. Computer Vision and Image Understanding, 2012, 116(3):396-410.
[8] Zhou T C, Chen X, Wu Z Y. Action recognition using hierarchically tree-structured dictionary encoding [J]. Journal of Image and Graphics, 2014, 19(7):1054-1061.(in Chinese)
[9] Chao Y W, Yeh Y R, Chen Y W, et al. Locality-constrained group sparse representation for robust face recognition [C]//Proc of the International Conference on Image Processing. Brussels, Belgium, 2011:761-764.
[10] Xiao W H, Wang B, Liu Y, et al. Action recognition using feature position constrained linear coding [C]//Proc of the International Conference on Multimedia and Expo. San Jose, CA, USA, 2013:1-6.
[11] Vedaldi, A, Zisserman A. Efficient additive kernels via explicit feature maps [C]//Proc of the International Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA, 2010: 2046-2053.
[12] Chapelle O, Haffner P, Vapnik V N. Support vector machines for histogram-based image classification [J]. IEEE Transactions on Neural Networks, 1999, 10(5): 1055-1064.
[13] Castrodad A, Sapiro G. Sparse modeling of human actions from motion imagery [J]. International Journal of Computer Vision, 2012, 100(1): 1-15.
[14] Michalis R, Iasonas K, Stefano S. Discovering discriminative action parts from mid-level video representations [C]//Proc of the International Conference of Computer Vision and Pattern Recognition. Rhode Island, USA, 2012:1242-1249.
[15] Sanin A, Sanderson C, Harandi M T, et al. Spatio-temporal covariance descriptors for action and gesture recognition [C]//Proc of International conference on Application of Computer Vision Workshop. Sydney, Australia, 2013:103-110.

Memo

Memo:
Biographies: Zhou Tongchi(1979—), male, graduate; Wu Zhenyang(corresponding author), male, doctor, professor, zhenyang@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.60971098, 61201345).
Citation: Zhou Tongchi, Cheng Xu, Li Nijun, et al. Action recognition using a hierarchy of feature groups[J].Journal of Southeast University(English Edition), 2015, 31(3):327-332.[doi:10.3969/j.issn.1003-7985.2015.03.005]
Last Update: 2015-09-20