|Table of Contents|

[1] Wang Haopeng, Yang Jun, Zhou Wenzhang, Chen Xianhua, et al. Assessing dynamic modulus propertiesfor typical asphalt mixtures in Jiangsu [J]. Journal of Southeast University (English Edition), 2016, 32 (1): 99-105. [doi:10.3969/j.issn.1003-7985.2016.01.017]
Copy

Assessing dynamic modulus propertiesfor typical asphalt mixtures in Jiangsu()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 1
Page:
99-105
Research Field:
Traffic and Transportation Engineering
Publishing date:
2016-03-20

Info

Title:
Assessing dynamic modulus propertiesfor typical asphalt mixtures in Jiangsu
Author(s):
Wang Haopeng Yang Jun Zhou Wenzhang Chen Xianhua
School of Transportation, Southeast University, Nanjing 210096, China
Keywords:
dynamic modulus prediction models asphalt pavement Witczak 1-37A Witczak 1-40D mechanistic empirical pavement design guide
PACS:
U414
DOI:
10.3969/j.issn.1003-7985.2016.01.017
Abstract:
To investigate the validity of two dynamic modulus predictive models(Witczak 1-37A viscosity-based model and Witczak 1-40D shear modulus-based model)in the context of Jiangsu, and evaluate the effect of different mixture design variables(aggregate gradations, binder type, and volumetric properties)on dynamic modulus E*, asphalt mixtures commonly used in the local surface layer, including Sup-13 and AC-13, are prepared in the laboratory and their dynamic modulus E* values are predicted based on the above mentioned models. The corresponding asphalt tests, including viscosity and dynamic shear modulus tests, are also carried out to obtain the prediction model parameters. The test results show that binder type and asphalt content have a significant impact on dynamic modulus. There is a good correlation between the E* values based on above two predictive models and the measured E*, while a relatively lower bias can be expected from Witczak 1-37A model. The test results can be used for the calibration of dynamic modulus with higher accuracy.

References:

[1] Saha J, Nassiri S, Bayat A, et al. Evaluation of the effects of Canadian climate conditions on the MEPDG predictions for flexible pavement performance[J]. International Journal of Pavement Engineering, 2014, 15(5): 392-401. DOI:10.1080/10298436.2012.752488.
[2] Wang H P, Yang J, Shi X Q, et al. Research on dynamic modulus and master curve of high modulus asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2015, 32(8): 12-17.(in Chinese)
[3] Obulareddy S. Fundamental characterization of Louisiana HMA mixtures for the 2002 mechanistic-empirical design guide[D]. Louisiana, USA: Louisiana State University, 2006.
[4] Shen S, Yu H, Willoughby K A, et al. Local practice of assessing dynamic modulus properties for Washington State mixtures[J]. Transportation Research Record, 2013, 2373: 89-99.
[5] Singh D, Zaman M, Commuri S. Evaluation of predictive models for estimating dynamic modulus of hot-mixture asphalt in Oklahoma[J]. Transportation Research Record, 2011, 2210: 57-72.
[6] Birgisson B, Sholar G, Roque R. Evaluation of a predicted dynamic modulus for Florida mixture[J]. Transportation Research Record, 2005, 1929: 200-207.
[7] Bari J, Witczak M W. Development of a new revised version of the Witczak E* predictive model for hot mixture asphalt mixtures[J]. Journal of the Association of Asphalt Paving Technologists, 2006, 75: 381-423.
[8] Azari H, Al-Khateeb G, Shenoy A, et al. Comparison of simple performance test E* of accelerated loading facility mixtures and prediction E*: use of NCHRP 1-37A and Witczaks new equations [J]. Transportation Research Record, 2007, 1998: 1-9.
[9] Ceylan H, Schwartz C W, Kim S, et al. Accuracy of predictive models for dynamic modulus of hot-mixture asphalt[J]. Journal of Materials in Civil Engineering, 2009, 21(6): 286-293. DOI:10.1061/(ASCE)0899-1561(2009)21:6(286).
[10] El-Badawy S, Bayomy F, Awed A. Performance of MEPDG dynamic modulus predictive models for asphalt concrete mixtures: local calibration for Idaho[J]. Journal of Materials in Civil Engineering, 2012, 24(11): 1412-1421. DOI:10.1061/(ASCE)MT.1943-5533.0000518.
[11] Wang H P, Yang J, Wang Z, et al. Investigation of fatigue and self-healing characteristics of asphalt mixtures[J]. Modern Transportation Technology, 2014, 11(4): 1-5.(in Chinese)
[12] El-Badawy, S M, Jeong M G, et al. Methodology to predict alligator fatigue cracking distress based on asphalt concrete dynamic modulus[J]. Transportation Research Record, 2009, 2095: 115-124.
[13] Tashman L, Elangovan M. Dynamic modulus of HMA and its relationship to actual and predicted field performance using MEPDG[J]. Journal of Performance of Constructed Facilities, 2012, 27(3): 334-345. DOI:10.1061/(ASCE)CF.1943-5509.0000328.
[14] Li J, Pierce L M, Uhlmeyer J. Calibration of flexible pavement in mechanistic-empirical pavement design guide for Washington State[J]. Transportation Research Record, 2009, 2095: 73-83.
[15] Kendall M. Rank correlation methods[M]. London: Charles Griffin and Co., 1948.

Memo

Memo:
Biographies: Wang Haopeng(1991—), male, graduate; Yang Jun(corresponding author), female, doctor, professor, yangjun@seu.edu.cn.
Foundation item: The Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120092110053).
Citation: Wang Haopeng, Yang Jun, Zhou Wenzhang, et al. Assessing dynamic modulus properties for typical asphalt mixtures in Jiangsu[J].Journal of Southeast University(English Edition), 2016, 32(1):99-105. DOI:10.3969/j.issn.1003-7985.2016.01.017.
Last Update: 2016-03-20