|Table of Contents|

[1] Tan LinlinYan Changxin, Huang XueliangWang WeiJing Wuwei,. Online frequency and power regulation schemeof magnetic coupled resonant wireless power transfer [J]. Journal of Southeast University (English Edition), 2016, 32 (2): 187-194. [doi:10.3969/j.issn.1003-7985.2016.02.010]
Copy

Online frequency and power regulation schemeof magnetic coupled resonant wireless power transfer()
磁耦合谐振式无线电能传输系统功频在线调节策略
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 2
Page:
187-194
Research Field:
Electrical Engineering
Publishing date:
2016-06-20

Info

Title:
Online frequency and power regulation schemeof magnetic coupled resonant wireless power transfer
磁耦合谐振式无线电能传输系统功频在线调节策略
Author(s):
Tan LinlinYan Changxin Huang XueliangWang WeiJing Wuwei
School of Electrical Engineering, Southeast University, Nanjing 210096, China
谭林林 颜长鑫 黄学良 王维 景无为
东南大学电气工程学院, 南京 210096
Keywords:
magnetic coupled resonant frequency regulation power regulation non-resistive load
磁耦合谐振 频率调节 功率调节 非阻性负载
PACS:
TM133
DOI:
10.3969/j.issn.1003-7985.2016.02.010
Abstract:
In order to address the issues that the magnetic coupled resonant wireless power transfer(MCR-WPT)system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resistive load in the MCR-WPT, a single-side regulation scheme for frequency and transmission power online is proposed, which is based on the inherent constraint relationships the among system parameters in the primary side. Thus, the communication between the primary side and the secondary side is avoided. First, the transfer models of resistance-capacitance load and resistance-inductance load are established, respectively. Next, the relationship between the input voltage phasor and the input current phasor is used to recognize the load property and value. Then, the coaxial rotation of the stepper motor and the rotating vacuum variable capacitor is conducted to unify resonant frequency both in the primary side and the secondary side. Finally, the regulations of both frequency and amplitude of input voltage are made to guarantee transmission power under a new resonant frequency point the same as the one when the only pure resistance part of load is accessed under the former resonant frequency point. Both simulation and experimental results indicate that the proposed regulation scheme can track resonant frequency and maintain transmission power constant.
为了解决磁耦合谐振式无线电能传输系统频率特性尖锐及非阻性负载接入时传输功率难以控制的问题, 基于系统初级侧参数固有的约束关系, 提出了一种单侧功-频在线控制策略, 从而避免两侧之间建立通讯.分别建立系统在阻容性和阻感性负载接入时的传输模型, 利用初级侧输入电压相量和输入电流相量的关系对负载性质和大小进行辨识;利用步进电机和初级侧真空可调电容的共轴旋转调整容值以使得初级侧谐振频率和次级侧谐振频率一致;调节输入电压频率和幅值以保持系统在新的谐振频率点下传输功率与在原谐振频率点下仅接入该负载阻性部分时的传输功率一致.仿真和实验结果表明, 所提出的控制策略能够准确地实现谐振频率的跟踪和传输功率的恒定.

References:

[1] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834):83-86. DOI:10.1126/science.1143254.
[2] Zhao Z, Zhang Y, Chen K. New progress of magnetically-coupled resonant wireless power transfer technology[J]. Proceedings of the Chinese Society of Electrical Engineering, 2013, 33(3):1-13.
[3] Yang Q. Research progress in contactless power transmission technology[J]. Transactions of China Electrotechnical Society, 2010, 25(7):6-13.
[4] Hui S Y R, Zhong W, Lee C K. A critical review of recent progress in mid-range wireless power transfer[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4500-4511. DOI:10.1109/tpel.2013.2249670.
[5] Bani S M, Kawamura A, Yuzurihara I, et al. A wireless power transfer system optimized for high efficiency and high power applications[C]//2014 International Power Electronics Conference. Hiroshima, Japan, 2014:2794-2801. DOI:10.1109/ipec.2014.6870077.
[6] Cheon S, Kim Y H, Kang S Y, et al. Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances[J]. IEEE Transactions on Industrial Electronics, 2011, 16(7):2906-2914. DOI:10.1109/tie.2010.2072893.
[7] Garnica J, Casanova J, Lin J. High efficiency midrange wireless power transfer system[J]. Environment & Development Economics, 2011, 16(16):73-76.
[8] Dionigi M, Franceschetti G, Mongiardo M. Resonant wireless power transfer: investigation of radiating resonances[C]//2013 IEEE Wireless Power Transfer. Perugia, Italy, 2013:17-20.
[9] Zhang Y, Zhao Z. Frequency splitting analysis of two-coil resonant wireless power transfer[J]. IEEE Antennas & Wireless Propagation Letters, 2014, 13(4):400-402.
[10] Lim Y, Tang H, Lim S, et al. An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer [J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4403-4413. DOI:10.1109/tpel.2013.2292596.
[11] Bou E, Sedwick R, Alarcon E. Maximizing efficiency through impedance matching from a circuit-centric model of non-radiative resonant wireless power transfer[C]//2013 IEEE International Symposium on Circuits and Systems. Beijing, China, 2013: 29-32. DOI:10.1109/iscas.2013.6571774.
[12] Tan L L, Huang X L, Huang H, et al. Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control[J]. Science China Technological Sciences, 2011, 54(6):1428-1434. DOI:10.1007/s11431-011-4380-6.
[13] Tan L L, Huang X L, Zhou Y L, et al. Optimal control of wireless energy transfer system via decreasing frequency [J]. Journal of Southeast University(English Edition), 2013, 29(3):259-263.
[14] Huang X L. Study on series-parallel model of wireless power transfer via magnetic resonance coupling[J]. Transactions of China Electrotechnical Society, 2013, 28(3):171-176.
[15] Zhang W, Wong S C, Tse C K, et al. Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems[J].IEEE Transactions on Power Electronics, 2014, 29(1):191-200. DOI:10.1109/tpel.2013.2249112.
[16] Sakemi G, Yoshimura T, Fukuda N. A study of optimization for efficiency and power control in an electromagnetic WPT system[C]//2013 IEEE International Meeting for Future of Electron Devices. Kansai, Japan, 2013:108-109.
[17] Gundogdu A E, Afacan E. The effect of frequency, multi resonator and relay resonator conditions on wireless power transmission[C]//Wireless Telecommunications Symposium(WTS). London, UK, 2012: 1-5.
[18] Zhang W, Wong S C, Tse C K, et al. Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems[J].IEEE Transactions on Power Electronics, 2014, 29(1): 191-200. DOI:10.1109/tpel.2013.2249112.
[19] Sun Y, Wang Z H, Dai X, et al. Study of frequency stability of contactless power transmission system[J]. Transactions of China Electrotechnical Society, 2005, 20(11):56-59.

Memo

Memo:
Biographies: Tan Linlin(1986—), male, doctor, lecturer; Huang Xueliang(corresponding author), male, doctor, professor, xlhuang@seu.edu.cn.
Foundation items: The National Natural Science Youth Foundation of China(No.51507032), the Natural Science Foundation of Jiangsu Province(No.BK20150617), the Fundamental Research Funds for the Central Universities.
Citation: Tan Linlin, Yan Changxin, Huang Xueliang, et al. Online frequency and power regulation scheme of magnetic coupled resonant wireless power transfer[J].Journal of Southeast University(English Edition), 2016, 32(2):187-194.doi:10.3969/j.issn.1003-7985.2016.02.010.
Last Update: 2016-06-20