|Table of Contents|

[1] Wu Gensheng, Zhang Yin, Si Wei, Gu Yunfeng, et al. Current blockade mechanism for DNA translocationthrough solid-state nanopore with different membrane thickness [J]. Journal of Southeast University (English Edition), 2016, 32 (3): 301-306. [doi:10.3969/j.issn.1003-7985.2016.03.007]
Copy

Current blockade mechanism for DNA translocationthrough solid-state nanopore with different membrane thickness()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 3
Page:
301-306
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2016-09-20

Info

Title:
Current blockade mechanism for DNA translocationthrough solid-state nanopore with different membrane thickness
Author(s):
Wu Gensheng1 Zhang Yin2 Si Wei2 Gu Yunfeng1 Chen Yunfei2
1School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
2Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
Keywords:
nanopore DNA sequencing relative current blockade membrane thickness
PACS:
O561.4
DOI:
10.3969/j.issn.1003-7985.2016.03.007
Abstract:
The current blockade mechanism for λ-DNA translocation under electrical field is investigated through solid-state nanopores with different pore thicknesses. The conductance of a nanopore system mainly consists of the contribution of the pore and access region, and the latter becomes dominant when the nanopore thickness gradually decreases to atomic layer thickness. Based on the existing model of nanopore resistance, a simplified model which describes the relative current blockade during the λ-DNA translocation through the nanopores is deduced to quantitatively present the relationship between nanopore thickness and relative current blockade. Results show that the relative current blockade is effectively increased by reducing the nanopore diameter but it decreases with the decreasing nanopore thickness. A two-stage schematic is proposed to increase the relative current blockade by setting a much smaller resistance region. Experimental results show a 21.9% increase in the relative current blockade with the proposed schematic.

References:

[1] Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis[J]. Nature Nanotechnology, 2011, 6(10): 615-624. DOI:10.1038/nnano.2011.129.
[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing[J].Nature biotechnology, 2008, 26(10): 1146-1153. DOI:10.1038/nbt.1495.
[3] Dekker C. Solid-state nanopores[J]. Nature Nanotechnology, 2007, 2(4): 209-215. DOI:10.1038/nnano.2007.27.
[4] van den Hout M, Vilfan I D, Hage S, et al. Direct force measurements on double-stranded RNA in solid-state nanopores[J]. Nano Letters, 2010, 10(2): 701-707. DOI:10.1021/nl903925a.
[5] Nelson E M, Li H, Timp G. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography[J]. ACS Nano, 2014, 8(6): 5484-5493. DOI:10.1021/nn405331t.
[6] Keyser U F, van der Does J, Dekker C, et al. Optical tweezers for force measurements on DNA in nanopores[J]. Review of Scientific Instruments, 2006, 77(10): 105105. DOI:10.1063/1.2358705.
[7] Smeets R M M, Keyser U F, Dekker N H, et al. Noise in solid-state nanopores[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 417-421.
[8] Ciccarella P, Carminati M, Ferrari G, et al. Integrated low-noise current amplifier for glass-based nanopore sensing[C]//2014 10th Conference on PhD Research in Microelectronics and Electronics.Grenoble, France, 2014: 1-4. DOI:10.1109/prime.2014.6872701.
[9] Tabard-Cossa V, Trivedi D, Wiggin M, et al. Noise analysis and reduction in solid-state nanopores[J].Nanotechnology, 2007, 18(30): 305505. DOI:10.1088/0957-4484/18/30/305505.
[10] Kumar A, Park K B, Kim H M, et al. Noise and its reduction in graphene based nanopore devices[J].Nanotechnology, 2013, 24(49): 495503. DOI:10.1088/0957-4484/24/49/495503.
[11] Wu G, Zhang Y, Si W, et al. Integrated solid-state nanopore devices for third generation DNA sequencing[J]. Science China—Technological Sciences, 2014, 57(10): 1925-1935. DOI:10.1007/s11431-014-5644-8.
[12] Traversi F, Raillon C, Benameur S M, et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons[J]. Nature Nanotechnology, 2013, 8(12): 939-945. DOI:10.1038/nnano.2013.240.
[13] Xie P, Xiong Q, Fang Y, et al. Local electrical potential detection of DNA by nanowire-nanopore sensors[J]. Nature Nanotechnology, 2011, 7(2): 119-125. DOI:10.1038/nnano.2011.217.
[14] Ivanov A P, Instuli E, McGilvery C M, et al. DNA tunneling detector embedded in a nanopore[J]. Nanoletters, 2010, 11(1): 279-285. DOI:10.1021/nl103873a.
[15] Fanget A, Traversi F, Khlybov S, et al. Nanopore integrated nanogaps for DNA detection[J]. Nano Lett, 2014, 14(1): 244-249. DOI:10.1021/nl403849g.
[16] King G M, Golovchenko J A. Probing nanotube-nanopore interactions[J]. Physical Review Letters, 2005, 95(21): 216103. DOI:10.1103/PhysRevLett.95.216103.
[17] Heng J B, Aksimentiev A, Ho C, et al. Beyond the gene chip[J]. Bell Labs Technical Journal, 2005, 10(3): 5-22. DOI:10.1002/bltj.20102.
[18] Sigalov G, Comer J, Timp G, et al. Detection of DNA sequences using an alternating electric field in a nanopore capacitor[J]. Nano Letters, 2008, 8(1): 56-63. DOI:10.1021/nl071890k.
[19] Gracheva M E, Xiong A, Aksimentiev A, et al. Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor[J]. Nanotechnology, 2006, 17(3): 622-633. DOI:10.1088/0957-4484/17/3/002.
[20] Liu K, Feng J, Kis A, et al. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation[J]. ACS Nano, 2014, 8(3): 2504-2511. DOI:10.1021/nn406102h.
[21] Liu S, Lu B, Zhao Q, et al. Boron nitride nanopores: Highly sensitive DNA single-molecule detectors[J].Advanced Materials, 2013, 25(33): 4549-4554. DOI:10.1002/adma.201301336.
[22] Venkatesan B M, Dorvel B, Yemenicioglu S, et al. Highly sensitive, mechanically stable nanopore sensors for DNA analysis[J]. Advanced Materials, 2009, 21(27): 2771-2776.
[23] Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467(7312): 190-193. DOI:10.1038/nature09379.
[24] Kowalczyk S W, Grosberg A Y, Rabin Y, et al. Modeling the conductance and DNA blockade of solid-state nanopores[J]. Nanotechnology, 2011, 22(31): 315101. DOI:10.1088/0957-4484/22/31/315101.
[25] Hille B. Ionic channels in nerve membranes[J]. Progress in Biophysics and Molecular Biology, 1970, 21: 1-32. DOI:10.1016/0079-6107(70)90022-2.
[26] Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient[J]. Nature Nanotechnology, 2010, 5(2): 160-165. DOI:10.1038/nnano.2009.379.
[27] Merchant C A, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores[J]. Nano Letters, 2010, 10(8): 2915-2921. DOI: 10.1021/nl101046t.
[28] Schneider G F, Kowalczyk S W, Calado V E, et al. DNA translocation through graphene nanopores[J]. Nano Letters, 2010, 10(8): 3163-3167. DOI:10.1021/nl102069z.
[29] Hall J E. Access resistance of a small circular pore[J]. The Journal of General Physiology, 1975, 66(4): 531-532. DOI:10.1085/jgp.66.4.531.
[30] Hyun C, Rollings R, Li J. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip[J]. Small, 2012, 8(3): 385-392. DOI:10.1002/smll.201290017.
[31] Goepfrich K, Kulkarni C V, Pambos O J, et al. Lipid nanobilayers to host biological nanopores for DNA translocations[J]. Langmuir, 2013, 29(1): 355-364. DOI:10.1021/la3041506.
[32] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773. DOI:10.1073/pnas.93.24.13770.
[33] Clarke J, Wu H C, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing[J]. Nature Nanotechnology, 2009, 4(4): 265-270. DOI:10.1038/nnano.2009.12.

Memo

Memo:
Biography: Wu Gensheng(1986—), male, doctor, lecturer, genshengwu@126.com.
Foundation items: The Natural Science Foundation of Jiangsu Province(No.BK20160935), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.16KJB460015).
Citation: Wu Gensheng, Zhang Yin, Si Wei, et al.Current blockade mechanism for DNA translocation through solid-state nanopore with different membrane thickness[J].Journal of Southeast University(English Edition), 2016, 32(3):301-306.DOI:10.3969/j.issn.1003-7985.2016.03.007.
Last Update: 2016-09-20