[1] Vollmann T E, Berry W L, Whybark D C. Manufacturing planning and control systems[M]. Homewood, IL, USA: Irwin, 1992: 1-20.
[2] Stoop P P M, Wiers V C S. The complexity of scheduling in practice[J]. International Journal of Operations & Production Management, 1996, 16(10): 37-53. DOI:10.1108/01443579610130682.
[3] Ouelhadj D, Petrovic S. A survey of dynamic scheduling in manufacturing systems[J]. Journal of Scheduling, 2009, 12(4): 417-431. DOI:10.1007/s10951-008-0090-8.
[4] Yin Y, Cheng S R, Cheng T C E, et al. Just-in-time scheduling with two competing agents on unrelated parallel machines[J]. Omega, 2016, 63: 41-47. DOI:10.1016/j.omega.2015.09.010.
[5] Yin Y, Wang Y, Cheng T C E, et al. Two-agent single-machine scheduling to minimize the batch delivery cost[J]. Computers & Industrial Engineering, 2016, 92: 16-30. DOI:10.1016/j.cie.2015.12.003.
[6] Morton T E, Rachamadugu R M. Myopic heuristics for the single machine weighted tardiness problem, Technical Report CMURI-TR-83-9[R]. Pittsburgh, USA:Graduate School of Industrial Administration, Carnegie-Mellon University, 1983.
[7] Kanet J J, Li X. A weighted modified due date rule for sequencing to minimize weighted tardiness[J]. Journal of Scheduling, 2004, 7(4): 261-276. DOI:10.1023/b:josh.0000031421.64487.95.
[8] He W, Sun D H. Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(1): 501-514. DOI:10.1007/s00170-012-4344-4.
[9] Petrovic D, Duenas A. A fuzzy logic based production scheduling/rescheduling in the presence of uncertain disruptions[J]. Fuzzy Sets and Systems, 2006, 157(16): 2273-2285. DOI:10.1016/j.fss.2006.04.009.
[10] Duenas A, Petrovic D. An approach to predictive-reactive scheduling of parallel machines subject to disruptions[J]. Annals of Operations Research, 2008, 159(1): 65-82. DOI:10.1007/s10479-007-0280-3.
[11] Varas M, Maturana S, Pascual R, et al. Scheduling production for a sawmill: A robust optimization approach[J]. International Journal of Production Economics, 2014, 150: 37-51. DOI:10.1016/j.ijpe.2013.11.028.
[12] Fang K T, Lin B M T. Parallel-machine scheduling to minimize tardiness penalty and power cost[J]. Computers & Industrial Engineering, 2013, 64(1): 224-234. DOI:10.1016/j.cie.2012.10.002.
[13] Le C V, Pang C K. Fast reactive scheduling to minimize tardiness penalty and energy cost under power consumption uncertainties[J]. Computers & Industrial Engineering, 2013, 66(2): 406-417. DOI:10.1016/j.cie.2013.07.006.
[14] Li X, Ishii H, Chen M. Single machine parallel-batching scheduling problem with fuzzy due-date and fuzzy precedence relation[J]. International Journal of Production Research, 2014, 53(9): 2707-2717. DOI:10.1080/00207543.2014.975866.
[15] Yin Y, Cheng T C E, Yang X, et al. Two-agent single-machine scheduling with unrestricted due date assignment[J]. Computers & Industrial Engineering, 2015, 79: 148-155. DOI:10.1016/j.cie.2014.10.025.
[16] Aydilek A, Aydilek H, Allahverdi A. Production in a two-machine flowshop scheduling environment with uncertain processing and setup times to minimize makespan[J]. International Journal of Production Research, 2015, 53(9): 2803-2819. DOI:10.1080/00207543.2014.997403.
[17] Yin Y, Liu M, Hao J, et al. Single-machine scheduling with job-position-dependent learning and time-dependent deterioration[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2012, 42(1): 192-200. DOI:10.1109/tsmca.2011.2147305.
[18] Wang R H, Fei S M. Rescheduling: External environment-related real-time events[J]. IFAC Proceedings Volumes, 2014, 47(3): 10743-10747. DOI:10.3182/20140824-6-za-1003.01792.