[1] Gijsenij A, Gevers T, van de Weijer J. Computational color constancy: Survey and experiments [J]. IEEE Transactions on Image Processing, 2011, 20(9): 2475-2489. DOI:10.1109/TIP.2011.2118224.
[2] Joze H R V, Drew M S. Exemplar-based color constancy and multiple illumination [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 860-873. DOI:10.1109/tpami.2013.169.
[3] Buchsbaum G. A spatial processor model for object color perception [J]. Journal of the Franklin Institute, 1980, 310(1): 1-26. DOI:10.1016/0016-0032(80)90058-7.
[4] Land E H. The retinex theory of color vision [J]. Scientific American, 1977, 237(6): 108-128. DOI:10.1038/scientificamerican1277-108.
[5] Van de Weijer J, Gevers T, Gijsenij A. Edge-based color constancy [J]. IEEE Transactions on Image Processing, 2007, 16(9): 2207-2214. DOI:10.1109/tip.2007.901808.
[6] Ying X, Hou L, Hou Y, et al. Canonicalized central absolute moment for edge-based color constancy [C]//IEEE International Conference on Image Processing. Melbourne, Australia, 2013: 2260-2263. DOI:10.1109/icip.2013.6738466.
[7] Gijsenij A, Gevers T, van de Weijer J. Improving color constancy by photometric edge weighting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 918-929. DOI:10.1109/TPAMI.2011.197.
[8] Gao S, Han W, Yang K, et al. Efficient color constancy with local surface reflectance statistics [C]//European Conference on Computer Vision. Zurich, Switzerland, 2014: 158-173. DOI:10.1007/978-3-319-10605-2-11.
[9] Gao S B, Yang K F, Li C Y, et al. Color constancy using double-opponency [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 1973-1985. DOI:10.1109/TPAMI.2015.2396053.
[10] Gehler P V, Rother C, Blake A, et al. Bayesian color constancy revisited [C]//IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA, 2008: 4587765-1-4587765-8. DOI:10.1109/cvpr.2008.4587765.
[11] Xiong W, Funt B. Estimating illumination chromaticity via support vector regression [J]. Journal of Imaging Science and Technology, 2006, 50(4): 341-348. DOI:10.2352/j.imagingsci.technol.(2006)50:4(341).
[12] Cheng D, Prasad D K, Brown M S. Illuminant estimation for color constancy: Why spatial-domain methods work and the role of the color distribution [J]. Journal of the Optical Society of America A, 2014, 31(5): 1049-1058. DOI:10.1364/josaa.31.001049.
[13] Shi L, Xiong W, Funt B. Illuminant estimation via thin-plate spline interpolation [J]. Journal of the Optical Society of America A, 2011, 28(5): 940-948. DOI:10.1364/josaa.28.000940.
[14] Gijsenij A, Gevers T. Color constancy using natural image statistics and scene statistics [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(4): 687-698. DOI:10.1109/TPAMI.2010.93.
[15] Finlayson G D. Corrected-moment illuminant estimation [C]//IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 1904-1911. DOI:10.1109/iccv.2013.239.
[16] Timofte R, de Smet V, van Gool L. Anchored neighborhood regression for fast example-based super-resolution [C]//IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 1920-1927. DOI:10.1109/iccv.2013.241.
[17] Mindru F, Tuytelaars T, van Gool L, et al. Moment invariants for recognition under changing viewpoint and illumination [J]. Computer Vision and Image Understanding, 2004, 94(1): 3-27. DOI:10.1016/j.cviu.2003.10.011.
[18] Ciurea F, Funt B. A large image database for color constancy research [C]//Proceedings of the Eleventh Color Imaging Conference. Scottsdale, Arizona, USA, 2003: 160-164.