[1] Stimilli A, Ferrotti G, Conti C, et al. Chemical and rheological analysis of modified bitumens blended with “artificial reclaimed bitumen”[J]. Construction and Building Materials, 2014, 63: 1-10. DOI:10.1016/j.conbuildmat.2014.03.047.
[2] Lee S J, Amirkhanian S N, Park N W, et al. Characterization of warm mix asphalt binders containing artificially long-term aged binders[J]. Construction and Building Materials, 2009, 23(6): 2371-2379. DOI:10.1016/j.conbuildmat.2008.11.005.
[3] Yu X, Zaumanis M, dos Santos S, et al. Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders[J]. Fuel, 2014, 135: 162-171. DOI:10.1016/j.fuel.2014.06.038.
[4] Zaumanis M, Mallick R B, Frank R. Evaluation of different recycling agents for restoring aged asphalt binder and performance of 100% recycled asphalt [J]. Materials and Structures, 2015, 48(8): 2475-2488. DOI:10.1617/s11527-014-0332-5.
[5] Xiao F P, Putman B, Amirkhanian S. Rheological characteristics investigation of high percentage RAP binders with WMA technology at various aging states [J]. Construction and Building Materials, 2015, 98: 315-324. DOI:10.1016/j.conbuildmat.2015.08.114.
[6] Xiao F P, Hou X D, Amirkhanian S, et al. Superpave evaluation of higher RAP contents using WMA technologies [J]. Construction and Building Materials, 2016, 112: 1080-1087. DOI:10.1016/j.conbuildmat.2016.03.024.
[7] Buss A, Williams R C, Schram S. The influence of warm mix asphalt on binders in mixes that contain recycled asphalt materials[J]. Construction and Building Materials, 2015, 77: 50-58. DOI:10.1016/j.conbuildmat.2014.12.023.
[8] Zhao S, Huang B, Shu X, et al. Laboratory performance evaluation of warm-mix asphalt containing high percentages of reclaimed asphalt pavement [J]. Transportation Research Record, 2012, 2294: 98-105. DOI:10.1016/j.conbuildmat.2013.03.010.
[9] Barco Carrion A J D, Lo Presti D, Airey G D. Binder design of high RAP content hot and warm asphalt mixture wearing courses [J]. Road Materials and Pavement Design, 2015, 16(sup1): 460-474. DOI:10.1080/14680629.2015.1029707.
[10] Gao Y, Gu F, Zhao Y. Thermal oxidative aging characterization of SBS modified asphalt [J]. Journal of Wuhan University of Technology(Materials Science Edition), 2013, 28(1): 88-91. DOI:10.1007/s11595-013-0646-0.
[11] Hossain Z, Lewis S, Zaman M, et al. Evaluation for warm-mix additive-modified asphalt binders using spectroscopy techniques [J]. Journal of Materials in Civil Engineering, 2013, 25(2): 149-159. DOI:10.1061/(asce)mt.1943-5533.0000562.
[12] Jia X Y, Huang B S, Bowers B F, et al. Infrared spectra and rheological properties of asphalt cement containing waste engine oil residues[J]. Construction and Building Materials, 2014, 50: 683-691. DOI:10.1016/j.conbuildmat.2013.10.012.
[13] Xiao F, Punith V S, Amirkhanian S N, et al. Rheological and chemical characteristics of warm mix asphalt binders at intermediate and low performance temperatures [J]. Canadian Journal of Civil Engineering, 2013, 40(9): 861-868. DOI:10.1139/cjce-2012-0363.
[14] Wu S P, Pang L, Mo L T, et al. Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen[J]. Construction and Building Materials, 2009, 23(2): 1005-1010. DOI:10.1016/j.conbuildmat.2008.05.004.
[15] Yao H, Dai Q, You Z, et al. Rheological properties, low-temperature cracking resistance, and optical performance of exfoliated graphite nanoplatelets modified asphalt binder [J]. Construction and Building Materials, 2016, 113:988-996. DOI:10.1016/j.conbuildmat.2016.03.152.