[1] Cline R E. Representations for the generalized inverse of a partitioned matrix [J]. Journal of the Society for Industrial and Applied Mathematics, 1964, 12(3): 588-600. DOI:10.1137/0112050.
[2] Cline R E. Representations for the generalized inverse of sums of matrices [J]. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 1965, 2(1): 99-114. DOI:10.1137/0702008.
[3] Hung C H, Markham T L. The Moore-Penrose inverse of a partitioned matrix M=[A 0
B C] [J]. Czechoslovak Mathematical Journal, 1975, 25(3):354-361.
[4] Hung C H, Markham T L. The Moore-Penrose inverse of a partitioned matrix M=[A D
B C] [J]. Linear Algebra and Its Applications, 1975, 11(1):73-86. DOI:10.1016/0024-3795(75)90118-4.
[5] Hartwig R E,Patrício P. When does the Moore-Penrose inverse flip [J]. Operators and Matrices, 2012, 6(1): 181-192. DOI:10.7153/oam-06-13.
[6] Zhu H H, Chen J L, Zhang X X, et al. The Moore-Penrose inverse of 2×2 matrices over a certain *-regular ring [J]. Applied Mathematics and Computation, 2014, 246: 263-267. DOI:10.1016/j.amc.2014.08.026.
[7] Patrício P. The Moore-Penrose inverse of a companion matrix [J]. Linear Algebra and Its Applications, 2012, 437(3): 870-877. DOI:10.1016/j.laa.2012.03.019.
[8] Patrício P. The regular sum [J]. Linear and Multilinear Algebra, 2014, 63(1): 185-200. DOI:10.1080/03081087.2013.860592.
[9] Patrício P, Puystjens R. About the von Neumann regularity of triangular block matrices [J]. Linear Algebra and Its Applications, 2001, 332-334: 485-502. DOI:10.1016/s0024-3795(01)00295-6.