[1] Thomas M, Corry B, Hilder T A. What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation?[J]. Small, 2014, 10(8): 1453-1465. DOI:10.1002/smll.201302968.
[2] Fornasiero F, Park H G, Holt J K, et al. Ion exclusion by sub-2-nm carbon nanotube pores [J]. Proceedings of the National Academy of Sciences, 2008, 105(45): 17250-17255. DOI:10.1073/pnas.0710437105.
[3] Stevens B J, Swift H. RNA transport from nucleus to cytoplasm in Chironomus salivary glands [J]. The Journal of Cell Biology, 1966, 31(1): 55-77. DOI:10.1083/jcb.31.1.55.
[4] Ying Y L, Zhang J, Gao R, et al. Nanopore-based sequencing and detection of nucleic acids [J]. Angewandte Chemie International Edition, 2013, 52(50): 13154-13161. DOI:10.1002/anie.201303529.
[5] Aksimentiev A. Deciphering ionic current signatures of DNA transport through a nanopore [J]. Nanoscale, 2010, 2(4): 468-483. DOI:10.1039/b9nr00275h.
[6] Bustamante C, Smith S B, Liphardt J, et al. Single-molecule studies of DNA mechanics [J]. Current Opinion in Structural Biology, 2000, 10(3): 279-285. DOI:10.1016/s0959-440x(00)00085-3.
[7] Cao R, Thapa R, Kim H, et al. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst [J]. Nature Communications, 2013, 4: 2076. DOI:10.1038/ncomms3076.
[8] Zhu F, Schulten K. Water and proton conduction through carbon nanotubes as models for biological channels [J]. BiophysicalJournal, 2003, 85(1): 236-244. DOI:10.1016/S0006-3495(03)74469-5.
[9] Cao C, Ying Y L, Hu Z L, et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore [J]. Nature Nanotechnology, 2016, 11(8): 713-718. DOI:10.1038/nnano.2016.66.
[10] de la Escosura-Muñiz A, Merkoçi A. Nanochannels preparation and application in biosensing [J]. ACS Nano, 2012, 6(9): 7556-7583. DOI:10.1021/nn301368z.
[11] Fologea D, Gershow M, Ledden B, et al. Detecting single stranded DNA with a solid state nanopore [J]. Nano Letters, 2005, 5(10): 1905-1909. DOI:10.1021/nl051199m.
[12] Gamble T, Decker K, Plett T S, et al. Rectification of ion current in nanopores depends on the type of monovalent cations: experiments and modeling [J]. The Journal of Physical Chemistry C, 2014, 118(18): 9809-9819. DOI:10.1021/jp501492g.
[13] Schoch R B, Han J, Renaud P. Transport phenomena in nanofluidics [J]. Reviews of Modern Physics, 2008, 80(3): 839-883. DOI:10.1103/revmodphys.80.839.
[14] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896.
[15] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321: 385-388. DOI:10.1126/science.1157996.
[16] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials, 2007, 6(9): 652-655. DOI:10.1038/nmat1967.
[17] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J].Science, 2008, 320(5881): 1308. DOI:10.1126/science.1156965.
[18] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-907. DOI:10.1021/nl0731872.
[19] Ferrari A C, Bonaccorso F, Fal’ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems [J]. Nanoscale, 2015, 7(11): 4598-4810. DOI:10.1039/c4nr01600a.
[20] Holt J K, Park H G, Wang Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes [J]. Science, 2006, 312(5776): 1034-1037. DOI:10.1126/science.1126298.
[21] Plecis A, Schoch R B, Renaud P. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip [J]. Nano Letters, 2005, 5(6):1147-1155. DOI:10.1021/nl050265h.
[22] Aksimentiev A, Schulten K. Imaging α-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map [J]. Biophysical Journal, 2005, 88(6): 3745-3761. DOI:10.1529/biophysj.104.058727.
[23] Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298K [J]. The Journal of Physical Chemistry A, 2001, 105(43): 9954-9960. DOI:10.1021/jp003020w.
[24] Smeets R M M, Keyser U F, Krapf D, et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores [J]. Nano Letters, 2006, 6(1): 89-95. DOI:10.1021/nl052107w.
[25] Si W, Sha J J, Liu L, et al. Effect of nanopore size on poly(dt)30 translocation through silicon nitride membrane [J]. Science China Technological Sciences, 2013, 56(10): 2398-2402. DOI:10.1007/s11431-013-5330-2.
[26] Ashkenasy N, Sánchez-Quesada J, Bayley H, et al. Recognizing a single base in an individual DNA strand: A step toward DNA sequencing in nanopores [J]. Angewandte Chemie, 2005, 117(9): 1425-1428. DOI: 10.1002/ange.200462114.
[27] Parsegian A. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems [J]. Nature, 1969, 221(5183): 844-846. DOI:10.1038/221844a0.
[28] Israelachvili J, Wennerström H. Role of hydration and water structure in biological and colloidal interactions[J]. Nature, 1996, 379(6562): 219-225. DOI:10.1038/379219a0.
[29] Sabbah S, Lerner A, Erlick C, et al. Under water polarization vision—A physical examination [J]. Recent Research Developments in Experimental and Theoretical Biology, 2005, 1: 123-176.
[30] Pal S K, Zhao L, Zewail A H. Water at DNA surfaces: Ultrafast dynamics in minor groove recognition [J]. Proceedings of the National Academy of Sciences, 2003, 100(14): 8113-8118. DOI:10.1073/pnas.1433066100.
[31] Duan C, Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels[J]. Nature Nanotechnology, 2010, 5(12): 848-852. DOI:10.1038/nnano.2010.233.
[32] Hunter R J. Zeta potential in colloid science: Principles and applications[M]. San Diego, CA, USA:Academic Press, 2013.
[33] Baldessari F. Santiago J G. Electrokinetics in nanochannels: Part Ⅰ. Electric double layer overlap and channel-to-well equilibrium[J]. Journal of Colloid and Interface Science, 2008, 325(2): 526-538. DOI:10.1016/j.jcis.2008.06.007.
[34] Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3): 035901. DOI:10.1103/PhysRevLett.93.035901.
[35] Karnik R, Fan R, Yue M, et al. Electrostatic control of ions and molecules in nanofluidic transistors[J]. Nano Letters, 2005, 5(5): 943-948. DOI:10.1021/nl050493b.