|Table of Contents|

[1] Chen Chen, Chen Yunfei, Sha Jingjie, et al. Molecular dynamics simulation of ion transportationthrough graphene nanochannels [J]. Journal of Southeast University (English Edition), 2017, 33 (2): 171-176. [doi:10.3969/j.issn.1003-7985.2017.02.008]
Copy

Molecular dynamics simulation of ion transportationthrough graphene nanochannels()
石墨烯纳通道中离子输运的分子动力学模拟
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 2
Page:
171-176
Research Field:
Materials Sciences and Engineering
Publishing date:
2017-06-30

Info

Title:
Molecular dynamics simulation of ion transportationthrough graphene nanochannels
石墨烯纳通道中离子输运的分子动力学模拟
Author(s):
Chen Chen1 2 Chen Yunfei1 2 Sha Jingjie1 2 Wu Gensheng3 Ma Jian1 2 Li Kun1 2 Ji Anping1 2
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
3School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
陈辰1 2 陈云飞1 2 沙菁1 2 伍根生3 马建1 2 李堃1 2 纪安平1 2
1东南大学机械工程学院, 南京 211189; 2东南大学江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189; 3南京林业大学机械电子工程学院, 南京 210037
Keywords:
molecular dynamics simulation ion transportation graphene nanochannels ionic conductance
分子动力学模拟 离子输运 石墨烯纳通道 离子电导
PACS:
TB383
DOI:
10.3969/j.issn.1003-7985.2017.02.008
Abstract:
The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both sides of graphene nanopore with various diameters. Then, their changing relationship with respect to the nanopore diameter is determined. When applying a uniform electric field, polar water molecules are rearranged so that the corresponding relationship between the polarized degree of these molecules and the nanopore diameter can be created. Based on the theoretical model of ion transportation through nanochannels, the changing relationship between the concentration of anions/cations in nanochannels and bulk solution concentration is quantitatively analyzed. The results show that the increase of potential drop and charge accumulation, as well as a more obvious water polarization, will occur with the decrease of nanopore diameter. In addition, hydrogen ion concentration has a large proportion in nanochannels with a sodium chloride(NaCl)solution at a relative low concentration. As the NaCl concentration increases, the concentration appreciation of sodium ions tends to be far greater than the concentration drop of chloride ions. Therefore, sodium ion concentration makes more contribution to ionic conductance.
采用分子动力学模拟方法建立了石墨烯纳通道中离子输运的模型, 统计了不同直径石墨烯纳米孔两侧的电势和电荷分布, 确立了电势和电荷分布随纳米孔直径的变化关系.通过施加匀强电场使极性水分子在石墨烯纳通道中重新排列, 总结出水分子的极化程度与纳通道直径的对应关系.利用建立的纳通道中离子输运的理论模型, 定量分析了不同直径纳通道中的阴、阳离子浓度与体态溶液浓度的变化关系.结果表明, 纳米孔径的减小会导致孔两侧电势降的增大、聚集电荷的增多, 并且水的极化程度也更加明显.此外, 在较低浓度的NaCl溶液下, 纳通道中氢离子浓度占的比重大.随着NaCl溶液浓度的增加, 通道中钠离子的浓度上升值远大于氢离子的浓度减小值, 因此, 钠离子浓度对于离子电导的贡献更大.

References:

[1] Thomas M, Corry B, Hilder T A. What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation?[J]. Small, 2014, 10(8): 1453-1465. DOI:10.1002/smll.201302968.
[2] Fornasiero F, Park H G, Holt J K, et al. Ion exclusion by sub-2-nm carbon nanotube pores [J]. Proceedings of the National Academy of Sciences, 2008, 105(45): 17250-17255. DOI:10.1073/pnas.0710437105.
[3] Stevens B J, Swift H. RNA transport from nucleus to cytoplasm in Chironomus salivary glands [J]. The Journal of Cell Biology, 1966, 31(1): 55-77. DOI:10.1083/jcb.31.1.55.
[4] Ying Y L, Zhang J, Gao R, et al. Nanopore-based sequencing and detection of nucleic acids [J]. Angewandte Chemie International Edition, 2013, 52(50): 13154-13161. DOI:10.1002/anie.201303529.
[5] Aksimentiev A. Deciphering ionic current signatures of DNA transport through a nanopore [J]. Nanoscale, 2010, 2(4): 468-483. DOI:10.1039/b9nr00275h.
[6] Bustamante C, Smith S B, Liphardt J, et al. Single-molecule studies of DNA mechanics [J]. Current Opinion in Structural Biology, 2000, 10(3): 279-285. DOI:10.1016/s0959-440x(00)00085-3.
[7] Cao R, Thapa R, Kim H, et al. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst [J]. Nature Communications, 2013, 4: 2076. DOI:10.1038/ncomms3076.
[8] Zhu F, Schulten K. Water and proton conduction through carbon nanotubes as models for biological channels [J]. BiophysicalJournal, 2003, 85(1): 236-244. DOI:10.1016/S0006-3495(03)74469-5.
[9] Cao C, Ying Y L, Hu Z L, et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore [J]. Nature Nanotechnology, 2016, 11(8): 713-718. DOI:10.1038/nnano.2016.66.
[10] de la Escosura-Muñiz A, Merkoçi A. Nanochannels preparation and application in biosensing [J]. ACS Nano, 2012, 6(9): 7556-7583. DOI:10.1021/nn301368z.
[11] Fologea D, Gershow M, Ledden B, et al. Detecting single stranded DNA with a solid state nanopore [J]. Nano Letters, 2005, 5(10): 1905-1909. DOI:10.1021/nl051199m.
[12] Gamble T, Decker K, Plett T S, et al. Rectification of ion current in nanopores depends on the type of monovalent cations: experiments and modeling [J]. The Journal of Physical Chemistry C, 2014, 118(18): 9809-9819. DOI:10.1021/jp501492g.
[13] Schoch R B, Han J, Renaud P. Transport phenomena in nanofluidics [J]. Reviews of Modern Physics, 2008, 80(3): 839-883. DOI:10.1103/revmodphys.80.839.
[14] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896.
[15] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321: 385-388. DOI:10.1126/science.1157996.
[16] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials, 2007, 6(9): 652-655. DOI:10.1038/nmat1967.
[17] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J].Science, 2008, 320(5881): 1308. DOI:10.1126/science.1156965.
[18] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-907. DOI:10.1021/nl0731872.
[19] Ferrari A C, Bonaccorso F, Fal’ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems [J]. Nanoscale, 2015, 7(11): 4598-4810. DOI:10.1039/c4nr01600a.
[20] Holt J K, Park H G, Wang Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes [J]. Science, 2006, 312(5776): 1034-1037. DOI:10.1126/science.1126298.
[21] Plecis A, Schoch R B, Renaud P. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip [J]. Nano Letters, 2005, 5(6):1147-1155. DOI:10.1021/nl050265h.
[22] Aksimentiev A, Schulten K. Imaging α-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map [J]. Biophysical Journal, 2005, 88(6): 3745-3761. DOI:10.1529/biophysj.104.058727.
[23] Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298K [J]. The Journal of Physical Chemistry A, 2001, 105(43): 9954-9960. DOI:10.1021/jp003020w.
[24] Smeets R M M, Keyser U F, Krapf D, et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores [J]. Nano Letters, 2006, 6(1): 89-95. DOI:10.1021/nl052107w.
[25] Si W, Sha J J, Liu L, et al. Effect of nanopore size on poly(dt)30 translocation through silicon nitride membrane [J]. Science China Technological Sciences, 2013, 56(10): 2398-2402. DOI:10.1007/s11431-013-5330-2.
[26] Ashkenasy N, Sánchez-Quesada J, Bayley H, et al. Recognizing a single base in an individual DNA strand: A step toward DNA sequencing in nanopores [J]. Angewandte Chemie, 2005, 117(9): 1425-1428. DOI: 10.1002/ange.200462114.
[27] Parsegian A. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems [J]. Nature, 1969, 221(5183): 844-846. DOI:10.1038/221844a0.
[28] Israelachvili J, Wennerström H. Role of hydration and water structure in biological and colloidal interactions[J]. Nature, 1996, 379(6562): 219-225. DOI:10.1038/379219a0.
[29] Sabbah S, Lerner A, Erlick C, et al. Under water polarization vision—A physical examination [J]. Recent Research Developments in Experimental and Theoretical Biology, 2005, 1: 123-176.
[30] Pal S K, Zhao L, Zewail A H. Water at DNA surfaces: Ultrafast dynamics in minor groove recognition [J]. Proceedings of the National Academy of Sciences, 2003, 100(14): 8113-8118. DOI:10.1073/pnas.1433066100.
[31] Duan C, Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels[J]. Nature Nanotechnology, 2010, 5(12): 848-852. DOI:10.1038/nnano.2010.233.
[32] Hunter R J. Zeta potential in colloid science: Principles and applications[M]. San Diego, CA, USA:Academic Press, 2013.
[33] Baldessari F. Santiago J G. Electrokinetics in nanochannels: Part Ⅰ. Electric double layer overlap and channel-to-well equilibrium[J]. Journal of Colloid and Interface Science, 2008, 325(2): 526-538. DOI:10.1016/j.jcis.2008.06.007.
[34] Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3): 035901. DOI:10.1103/PhysRevLett.93.035901.
[35] Karnik R, Fan R, Yue M, et al. Electrostatic control of ions and molecules in nanofluidic transistors[J]. Nano Letters, 2005, 5(5): 943-948. DOI:10.1021/nl050493b.

Memo

Memo:
Biographies: Chen Chen(1991—), male, graduate; Chen Yunfei(corresponding author), male, doctor, professor, yunfeichen@seu.edu.cn.
Foundation items: The National Basic Research Program of China(973 Program)(No.2011CB707600), the National Natural Science Foundation of China(No.51435003, 51375092), the Natural Science Foundation of Jiangsu Province(No.BK20160935), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.16KJB460015).
Citation: Chen Chen, Chen Yunfei, Sha Jingjie, et al.Molecular dynamics simulation of ion transportation through graphene nanochannels[J].Journal of Southeast University(English Edition), 2017, 33(2):171-176.DOI:10.3969/j.issn.1003-7985.2017.02.008.
Last Update: 2017-06-20