|Table of Contents|

[1] Yan Chunni, Huang Juan, Yang Sisi, Cao Chong, et al. Nitrification intensity and ammonia-oxidizing bacteria and archaeain different wetland plant rhizosphere soils [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 466-472. [doi:10.3969/j.issn.1003-7985.2017.04.012]
Copy

Nitrification intensity and ammonia-oxidizing bacteria and archaeain different wetland plant rhizosphere soils()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 4
Page:
466-472
Research Field:
Environmental Science and Engineering
Publishing date:
2017-12-30

Info

Title:
Nitrification intensity and ammonia-oxidizing bacteria and archaeain different wetland plant rhizosphere soils
Author(s):
Yan Chunni Huang Juan Yang Sisi Cao Chong Peng Cheng Li Runqing
School of Civil Engineering, Southeast University, Nanjing 210096, China
Keywords:
wetland plant rhizosphere nitrification intensity ammonia-oxidizing bacteria ammonia-oxidizing archaea fluorescence in situ hybridization
PACS:
X171.1
DOI:
10.3969/j.issn.1003-7985.2017.04.012
Abstract:
In order to explore the nitrogen removal process in constructed wetlands(CWs), the moisture, ammonia nitrogen(NH4+-N), nitrate nitrogen(NO-3-N)and nitrification intensity in three wetland plant rhizosphere soils(Acorus calamus, Typha orientalis, Iris pseudacorus)were investi-gated at a relatively normal temperature range of 15 to 25 ℃. The relative abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)were also achieved using fluorescence in situ hybridization(FISH). It is found that T.orientalis achieves the highest nitrification intensity of 2.03 mg/(h ·kg)while the second is I.pseudacorus(1.74 mg/(h ·kg)), and followed by A.calamus(1.65 mg/(h ·kg))throughout the experiment. FISH reveals that the abundance of bacteria(1010 g-1 wet soil)is higher than that of archaea(109 g-1 wet soil), and AOB are the dominant bacteria in the ammonia oxidation process. The abundance of AOB in the rhizosphere soils from high to low are T.orientalis(1.88×1010g-1), I.pseudacorus(1.23×1010 g-1), A.calamus(5.07×109 g-1)while the abundance of AOA from high to low are I.pseudacorus(4.00×109 g-1), A.calamus(3.52×109 g-1), T.orientalis(3.48×109 g-1). The study provides valuable evidence of plant selection for nitrogen removal in CWs.

References:

[1] Saeed T, Sun G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media [J]. Journal of Environmental Management, 2012, 112: 429-448. DOI:10.1016/j.jenvman.2012.08.011.
[2] Gikas G D, Tsihrintzis V A. A small-size vertical flow constructed wetland for on-site treatment of household wastewater [J]. Ecological Engineering, 2012, 44: 337-343. DOI:10.1016/j.ecoleng.2012.04.016.
[3] Wu S, Kuschk P, Brix H, et al. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review [J]. Water Research, 2014, 57: 40-55. DOI:10.1016/j.watres.2014.03.020.
[4] Badhe N, Saha S, Biswas R, et al. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland [J]. Bioresource Technology, 2014, 169: 596-604. DOI:10.1016/j.biortech.2014.07.050.
[5] Zeng F, Chen S, Miao Y, et al. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress [J]. Environmental Pollution, 2008, 155(2): 284-289. DOI:10.1016/j.envpol.2007.11.019.
[6] Peralta R M, Ahn C, Gillevet P M. Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands [J]. Science of the Total Environment, 2013, 443: 725-732. DOI:10.1016/j.scitotenv.2012.11.052.
[7] Fang C W, Radosevich M, Fuhrmann J J. Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses [J]. Soil Biology & Biochemistry, 2001, 33(4): 679-682. DOI:10.1016/s0038-0717(00)00215-7.
[8] Vacca G, Wand H, Nikolausz M, et al. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands [J]. Water Research, 2005, 39(7): 1361-1373. DOI:10.1016/j.watres.2005.01.005.
[9] Caffrey J M, Bano N, Kalanetra K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia [J]. The ISME Journal, 2007, 1: 660-662. DOI:10.1038/ismej.2007.79.
[10] Trias R, Ruiz-Rueda O, Garcia-Lledo A, et al. Emergent macrophytes act selectively on ammonia-oxidizing bacteria and archaea [J]. Applied and Environmental Microbiology, 2012, 78(17): 6352-6356. DOI:10.1128/aem.00919-12.
[11] Fan L, Chen H, Hsieh H, et al. Comparing abundance, composition and environmental influences on prokaryotic ammonia oxidizers in two subtropical constructed wetlands[J]. Ecological Engineering, 2016, 90: 336-346. DOI:10.1016/j.ecoleng.2016.01.034.
[12] Lam P, Jensen M M, Lavik G, et al. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17): 7104-7109. DOI:10.1073/pnas.0611081104.
[13] Jiang H C, Dong H L, Yu B S, et al. Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, Northwestern China [J]. Geomicrobiology Journal, 2009, 26(3): 199-211. DOI:10.1080/01490450902744004
[14] Bollmann A, Bullerjahn G S, Mckay R M. Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and Superior [J]. Plos One, 2014, 9(5): e97068. DOI:10.1371/journal.pone.0097068
[15] Di H J, Cameron K C, Shen J P, et al. A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea [J]. Soil Use and Management, 2009, 25(4): 454-461. DOI:10.1111/j.1475-2743.2009.00241.x.
[16] Laverman A M, Speksnijder A G, Braster M, et al. Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil [J]. Microbial Ecology, 2001, 42(1): 35-45. DOI:10.1007/s002480000038.
[17] Wang Y, Ke X, Wu L, et al. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization [J]. Systematic and Applied Microbiology, 2009, 32(1): 27-36. DOI:10.1016/j.syapm.2008.09.007.
[18] Huang J, Cai W S, Zhong Q S, et al. Influence of temperature on micro-environment, plant eco-physiology and nitrogen removal effect in subsurface flow constructed wetland [J]. Ecological Engineering, 2013, 60: 242-248. DOI:10.1016/j.ecoleng.2013.07.023.
[19] Lorenzen J, Larsen L, Kjaer T, et al. Biosensor determination of the microscale distribution of nitrate, nitrate assimilation [J]. Applied and Environmental Microbiology, 1998, 64(9): 3264-3269.
[20] Domingues M R, Araujo J C, Varesche M B, et al. Evaluation of thermophilic anaerobic microbial consortia using fluorescence in situ hybridization(FISH)[J]. Water Science and Technology, 2002, 45(10): 27-33.
[21] Amann R, Fuchs B M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques [J]. Nature Reviews Microbiology, 2008, 6(5): 339-348. DOI:10.1038/nrmicro1888.
[22] WiléB M, Onuki M, Hermansson M, et al. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability [J]. Water Research, 2008, 42(8/9): 2300-2308. DOI:10.1016/j.watres.2007.12.013.
[23] Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria [J]. Applied and Environmental Microbiology, 2002, 68(6): 3094-3101. DOI:10.1128/aem.68.6.3094-3101.2002.
[24] Pichon D, Gaia V, Norman M D, et al. Phylogenetic diversity of epibiotic bacteria in the accessory nidamental glands of squids(Cephalopoda: Loliginidae and Idiosepiidae)[J]. Marine Biology, 2005, 147(6): 1323-1332. DOI:10.1007/s00227-005-0014-5.
[25] Schramm A, De B D, Gieseke A, et al. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm [J]. Environmental Microbiology, 2000, 2(6): 680-686. DOI:10.1046/j.1462-2920.2000.00150.x.
[26] Teira E, Reinthaler T, Pernthaler A, et al. Combining catalyzed reporter deposition-dluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean [J]. Applied and Environmental Microbiology, 2004, 70(7): 4411-4414. DOI:10.1128/AEM.70.7.4411-4414.2004.
[27] Chang J J, Wu S Q, Dai Y R, et al. Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater [J]. Ecological Engineering, 2012, 44: 152-159. DOI:10.1016/j.ecoleng.2012.03.019.
[28] Vymazal J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development [J]. Water Research, 2013, 47(14): 4795-4811. DOI:10.1016/j.watres.2013.05.029.
[29] Wang R, Baldy V, Perissol C, et al. Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations [J]. Journal of environmental management, 2012, 95(Suppl): 158-164. DOI:10.1016/j.jenvman.2011.03.021.
[30] Deng H, Ge L, Xu T, et al. Analysis of the metabolic utilization of carbon sources and potential functional diversity of the bacterial community in lab-scale horizontal subsurface-flow constructed wetlands [J]. Journal of Environmental Quality, 2011, 40(6): 17301736. DOI:10.2134/jeq2010.0322.
[31] Prosser J I, Nicol G W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation [J]. Trends in Microbiology, 2012, 20(11): 523-531. DOI:10.1016/j.tim.2012.08.001.
[32] Yao H, Campbell C D, Chapman S J, et al. Multi-factorial drivers of ammonia oxidizer communities: Evidence from a national soil survey [J]. Environmental Microbiology, 2013, 15(9): 2545-2556. DOI:10.1111/1462-2920.12141.
[33] Cubry-Rangin C, Nicol G W, Prosser J I. Archaea rather than bacteria control nitrification in two agricultural acidic soils [J]. Fems Microbiology Ecology, 2010, 74(3): 566-574. DOI:10.1111/j.1574-6941.2010.00971.x.
[34] Vymazal J. Plants used in constructed wetlands with horizontal subsurface flow: A review [J]. Hydrobiologia, 2011, 674(1): 133-156. DOI:10.1007/s10750-011-0738-9.
[35] Oved T, Shaviv A, Goldrath T, et al. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil [J]. Applied and Environmental Microbiology, 2001, 67(8): 3426-3433. DOI:10.1128/aem.67.8.3426-3433.2001.
[36] Strauss S L, Reardon C L, Mazzola M. The response of ammonia-oxidizer activity and community structure to fertilizer amendment of orchard soils [J]. Soil Biology and Biochemistry, 2014, 68: 410-418. DOI:10.1016/j.soilbio.2013.10.016.
[37] Stefanakis A I, Tsihrintzis V A. Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands [J]. Chemical Engineering Journal, 2012, 181: 416-430. DOI:10.1016/j.cej.2011.11.108.

Memo

Memo:
Biographies: Yan Chunni(1989—), female, master; Huang Juan(corresponding author), female, doctor, professor, 101010942@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51479034, 50909019), the Fundamental Research Funds for the Central Universities.
Citation: Yan Chunni, Huang Juan, Yang Sisi, et al. Nitrification intensity and ammonia-oxidizing bacteria and archaea in different wetland plant rhizosphere soils[J].Journal of Southeast University(English Edition), 2017, 33(4):466-472.DOI:10.3969/j.issn.1003-7985.2017.04.012.
Last Update: 2017-12-20