|Table of Contents|

[1] Xu Jianmin, Yan Xiaowen, Ma Yingying, Jing Binbin, et al. Perimeter traffic control strategybased on macroscopic fundamental diagrams [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 502-510. [doi:10.3969/j.issn.1003-7985.2017.04.018]
Copy

Perimeter traffic control strategybased on macroscopic fundamental diagrams()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 4
Page:
502-510
Research Field:
Traffic and Transportation Engineering
Publishing date:
2017-12-30

Info

Title:
Perimeter traffic control strategybased on macroscopic fundamental diagrams
Author(s):
Xu Jianmin Yan Xiaowen Ma Yingying Jing Binbin
School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
Keywords:
macroscopic fundamental diagram perimeter control green duration optimization microscopic simulation
PACS:
U491
DOI:
10.3969/j.issn.1003-7985.2017.04.018
Abstract:
A perimeter traffic signal control strategy is proposed based on the macroscopic fundamental diagram theory(MFD)to solve the signal control problem in oversaturated states. First, the MFD of a specific regional network can be derived using VISSIM simulation software. Secondly, the maximum number of cumulative vehicles that the network can accommodate is determined based on the MFD. Then, through monitoring the influx flow, the number of vehicles existing in and exiting from the network, a perimeter traffic control model is proposed to optimize the signal timing of the boundary intersections. Finally, a virtual network simulation model is established and three different kinds of traffic demand are loaded into the network. Simulation results show that after the strategy implementation, the number of vehicles accumulating in the network can be kept near the optimal value, while the number of both entering and exiting vehicles increases significantly and the road network can be maintained at a large capacity. Simultaneously, the queue length at the approach of the border intersections is reasonably controlled and vehicles entering and exiting the network can maintain a more efficient and stable speed. The network performance indices such as the average traffic delay and average number of stops can be improved to a certain degree, thus verifying the effectiveness and feasibility of the perimeter control strategy.

References:

[1] Daganzo C F. Urban gridlock: Macroscopic modeling and mitigation approaches [J]. Transportation Research Part B: Methodological, 2007, 41(1):49-62. DOI:10.1016/j.trb.2006.03.001.
[2] Geroliminis N, Sun J. Properties of a well-defined macroscopic fundamental diagram for urban traffic [J]. Transportation Research Part B: Methodological, 2011, 45(3):605-617. DOI:10.1016/j.trb.2010.11.004.
[3] Cassidy M J, Jang K, Daganzo C F. Macroscopic fundamental diagrams for freeway networks theory and observation [J]. Transportation Research Record, 2011, 2260: 8-15. DOI:10.3141/2260-02.
[4] Xu F F, He Z C, Sha Z R. Impacts of traffic management measures on urban network microscopic fundamental diagram [J]. Journal of Transportation Systems Engineering and Information Technology, 2013(2):185-190.
[5] Gonzales E J, Chavis C, Li Y, et al. Multimodal transport modeling for Nairobi, Kenya: Insights and recommendations with an evidence-based model, UCB-ITS-VWP-2009-5 [R]. Berkeley, USA: UC Berkeley Center for Future Urban Transport, 2009.
[6] Du Y M, Wu J P, Jia Y H, et al. MFD-based regional traffic volume dynamic control [J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 35(3): 162-167.
[7] Buisson C, Ladier C. Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams [J]. Transportation Research Record, 2009, 2124: 127-136. DOI:10.3141/2124-12.
[8] He Z, He S, Guan W. A figure-eight hysteresis pattern in macroscopic fundamental diagrams and its microscopic causes [J]. Transportation Letters: The International Journal of Transportation Research, 2015, 7(3): 133-142. DOI:10.1179/1942787514y.0000000041.
[9] Xie X, Chiabaut N, Leclercq L. Macroscopic fundamental diagram for urban streets and mixed traffic cross comparison of estimation methods [J]. Transportation Research Record, 2013, 2390:1-10. DOI:10.3141/2390-01.
[10] Ji Y, Daamen W, Hoogendoorn-Lanser S, et al. Investigating the shape of the macroscopic fundamental diagram using simulation data [J]. Transportation Research Record, 2010, 2161: 40-48. DOI: 10.3141/2161-05.
[11] Stamos I, Salanova Grau J M, Mitsakis E, et al. Macroscopic fundamental diagrams: Simulation findings for the ssaloniki’s road network [J]. International Journal for Traffic and Transport Engineering, 2015, 5(3):225-237. DOI:10.7708/ijtte.2015.5(3).01.
[12] Ma Y Y. Study of sub-network-oriented traffic signal control strategy [D]. Shanghai: College of Transportation Engineering, Tongji University, 2010.(in Chinese)
[13] Aboudolas K, Geroliminis N. Perimeter flow control in heterogeneous networks [C]//13th Swiss Transport Research Conference. Ascona, Switzerland, 2013:1055-1081.
[14] Aboudolas K, Geroliminis N. Perimeter and boundary flow control in multi-reservoir heterogeneous networks [J]. Transportation Research Part B: Methodological, 2013, 55:265-281. DOI:10.1016/j.trb.2013.07.003.
[15] Aboudolas K, Geroliminis N. Feedback perimeter control for multi-region large-scale congested networks [C]//2013 European Control Conference. Zurich, Switzerland, 2013:106-114.
[16] Haddad J, Ramezani M, Geroliminis N. Model predictive perimeter control for urban areas with macroscopic fundamental diagrams [C]//American Control Conference. Montreal, QC, Canada, 2012:5757-5762.
[17] Zhang Y, Bai Y, Yang X G. Deadlock control strategy in urban road network [J]. Journal of Highway in China, 2010, 23(6):96-102.(in Chinese)
[18] Yoshii T, Yonezawa Y, Kitamura R. Evaluation of an area metering control method using the macroscopic fundamental diagram [C]//Proceedings of the 12th World Conference on Transportation Research(WCTR). Lisbon, Portugal, 2010:1-12.
[19] Keyvan-Ekbatani M, Kouvelas A, Papamichail I, et al. Exploiting the fundamental diagram of urban networks for feedback-based gating [J]. Transportation Research Part B: Methodological, 2012, 46(10):1393-1403. DOI:10.1016/j.trb.2012.06.008.
[20] Wang F J, Wei W, Wang D H, et al. Identifying and monitoring the traffic state in urban road network based on macroscopic fundamental diagram[C]//Proceedings of Intelligent Transport Annual Meeting. Hefei, China, 2012:35-39.(in Chinese)
[21] Li Y S, Xu J M, Shen L. A perimeter control strategy for oversaturated network preventing queue spillback [J]. Procedia—Social and Behavioral Sciences, 2012, 43:418-427. DOI:10.1016/j.sbspro.2012.04.115.

Memo

Memo:
Biography: Xu Jianmin(1960—), male, doctor, professor, aujmxu@scut.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51308227), the Fundamental Research Funds for the Central Universities(No.201522087), the Science and Technology Planning Project of Guangdong Province(No.2016A030305001), the Project of Department of Communications of Guangdong Province(No.2015-02-070).
Citation: Xu Jianmin, Yan Xiaowen, Ma Yingying, et al.Perimeter traffic control strategy based on macroscopic fundamental diagrams[J].Journal of Southeast University(English Edition), 2017, 33(4):502-510.DOI:10.3969/j.issn.1003-7985.2017.04.018.
Last Update: 2017-12-20