[1] Wei Q, Peng X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus[J]. Applied Physics Letters, 2014, 104(25):251915. DOI:10.1063/1.4885215.
[2] Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23):817-824. DOI:10.1103/physrevb.89.235319.
[3] Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors.[J]. Nature Nanotechnology, 2014, 9(5):372-377. DOI:10.1038/nnano.2014.35.
[4] Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041. DOI:10.1038/nnano.2014.35.
[5] Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2011, 5:4475-4475. DOI:10.1038/ncomms5475.
[6] Hong T, Chamlagain B, Lin W, et al. Polarized photocurrent response in black phosphorus field-effect transistors[J]. Nanoscale, 2014, 6(15): 8978-8983. DOI:10.1039/c4nr02164a.
[7] Xiao J, Long M, Zhang X, et al. First-principles prediction of the charge mobility in black phosphorus semiconductor nanoribbons[J]. Journal of Physical Chemistry Letters, 2015, 6(20): 4141-4147. DOI:10.1021/acs.jpclett.5b01644.
[8]Fei R, Faghaninia A, Soklaski R, et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene[J]. Nano Letters, 2014, 14(11): 6393-6399.DOI:10.1021/nl502865s.
[9] Lv H Y, Lu W J, Shao D F, et al. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence[J]. Physical Review B, 2014, 90(8):085433. DOI:10.1103/physrevb.90.085433.
[10] Ma F, Zheng H B, Sun Y J, et al. Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene[J]. Applied Physics Letters, 2012, 101(11): 111904. DOI:10.1063/1.4752010.
[11] Qin G Z, Yan Q B, Qin Z Z, et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance[J]. Scientific Reports, 2014, 4: 6946. DOI:10.1038/srep06946.
[12] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. DOI:10.1006/jcph.1995.1039.
[13] Jiang J W. Parametrization of Stillinger-Weber potential based on valence force field model: Application to single-layer MoS2 and black phosphorus[J]. Nanotechnology, 2015, 26(31): 315-706. DOI:10.1088/0957-4484/26/31/315706.
[14] Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. The Journal of Chemical Physics, 1997, 106(14): 6082-6085. DOI:10.1063/1.473271.
[15] Jain A, McGaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene[J]. Scientific Reports, 2015, 5: 8501. DOI:10.1038/srep08501.
[16] Zhang Y Y, Pei Q X, Jiang J W, et al. Thermal conductivities of single- and multi-layer phosphorene: A molecular dynamics study[J]. Nanoscale, 2016, 8(1): 483-491. DOI:10.1039/c5nr05451f.
[17] Xu X, Pereira L F C, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications, 2014, 5: 3689. DOI:10.1038/ncomms4689.
[18] Yang F, Dames C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures[J]. Physical Review B, 2013, 87(3): 035437. DOI:10.1103/physrevb.87.035437.
[19] Korznikova E A, Baimova J A, Dmitriev S V. Effect of strain on gap discrete breathers at the edge of armchair graphene nanoribbons[J]. EPL(Europhysics Letters), 2013, 102(6): 60004. DOI:10.1209/0295-5075/102/60004.
[20] Jiang J W, Park H S. Negative poisson’s ratio in single-layer black phosphorus[J]. Nature Communications, 2014, 5: 4727. DOI:10.1038/ncomms5727.