|Table of Contents|

[1] Wu Junwei, Tao Yi, Chen Chen, et al. Molecular dynamics simulations of strain-dependent thermalconductivity of single-layer black phosphorus [J]. Journal of Southeast University (English Edition), 2018, 34 (1): 43-47. [doi:10.3969/j.issn.1003-7985.2018.01.007]
Copy

Molecular dynamics simulations of strain-dependent thermalconductivity of single-layer black phosphorus()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 1
Page:
43-47
Research Field:
Materials Sciences and Engineering
Publishing date:
2018-03-20

Info

Title:
Molecular dynamics simulations of strain-dependent thermalconductivity of single-layer black phosphorus
Author(s):
Wu Junwei1 2 Tao Yi1 2 Chen Chen1 2 Chen Yuewen1 Chen Yunfei1 2
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
Keywords:
molecular dynamics single-layer black phosphorus strain thermal conductivity phonon density of state mean free path
PACS:
TB383
DOI:
10.3969/j.issn.1003-7985.2018.01.007
Abstract:
Classical molecular dynamics(MD)simulations are performed to investigate the effects of mechanical strain on the thermal conductivity of single-layer black phosphorus(SLBP)nanoribbons along different directions at room temperature. The results show that the tensile strain affects the thermal conductivity of nanoribbons by changing the phonon density of state(DOS)and mean free path(MFP). The thermal conductivity shows a sharp enhancement with the tensile strain applied along the armchair direction, while it increases slowly with the strain applied along the zigzag direction. This phenomenon can be mainly explained by effects of the phonon DOS and MFP. The increasing strain along the armchair direction weakens DOS and strengthens MFP clearly. However, when it comes to the increasing strain along the zigzag direction, DOS enhances significantly while MFP decreases slightly. The findings explore the relationship between the tensile strain and the thermal conductivity reasonably and can provide a reliable method to estimate the MFP of black phosphorus.

References:

[1] Wei Q, Peng X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus[J]. Applied Physics Letters, 2014, 104(25):251915. DOI:10.1063/1.4885215.
[2] Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23):817-824. DOI:10.1103/physrevb.89.235319.
[3] Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors.[J]. Nature Nanotechnology, 2014, 9(5):372-377. DOI:10.1038/nnano.2014.35.
[4] Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041. DOI:10.1038/nnano.2014.35.
[5] Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2011, 5:4475-4475. DOI:10.1038/ncomms5475.
[6] Hong T, Chamlagain B, Lin W, et al. Polarized photocurrent response in black phosphorus field-effect transistors[J]. Nanoscale, 2014, 6(15): 8978-8983. DOI:10.1039/c4nr02164a.
[7] Xiao J, Long M, Zhang X, et al. First-principles prediction of the charge mobility in black phosphorus semiconductor nanoribbons[J]. Journal of Physical Chemistry Letters, 2015, 6(20): 4141-4147. DOI:10.1021/acs.jpclett.5b01644.
[8]Fei R, Faghaninia A, Soklaski R, et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene[J]. Nano Letters, 2014, 14(11): 6393-6399.DOI:10.1021/nl502865s.
[9] Lv H Y, Lu W J, Shao D F, et al. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence[J]. Physical Review B, 2014, 90(8):085433. DOI:10.1103/physrevb.90.085433.
[10] Ma F, Zheng H B, Sun Y J, et al. Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene[J]. Applied Physics Letters, 2012, 101(11): 111904. DOI:10.1063/1.4752010.
[11] Qin G Z, Yan Q B, Qin Z Z, et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance[J]. Scientific Reports, 2014, 4: 6946. DOI:10.1038/srep06946.
[12] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. DOI:10.1006/jcph.1995.1039.
[13] Jiang J W. Parametrization of Stillinger-Weber potential based on valence force field model: Application to single-layer MoS2 and black phosphorus[J]. Nanotechnology, 2015, 26(31): 315-706. DOI:10.1088/0957-4484/26/31/315706.
[14] Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. The Journal of Chemical Physics, 1997, 106(14): 6082-6085. DOI:10.1063/1.473271.
[15] Jain A, McGaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene[J]. Scientific Reports, 2015, 5: 8501. DOI:10.1038/srep08501.
[16] Zhang Y Y, Pei Q X, Jiang J W, et al. Thermal conductivities of single- and multi-layer phosphorene: A molecular dynamics study[J]. Nanoscale, 2016, 8(1): 483-491. DOI:10.1039/c5nr05451f.
[17] Xu X, Pereira L F C, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications, 2014, 5: 3689. DOI:10.1038/ncomms4689.
[18] Yang F, Dames C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures[J]. Physical Review B, 2013, 87(3): 035437. DOI:10.1103/physrevb.87.035437.
[19] Korznikova E A, Baimova J A, Dmitriev S V. Effect of strain on gap discrete breathers at the edge of armchair graphene nanoribbons[J]. EPL(Europhysics Letters), 2013, 102(6): 60004. DOI:10.1209/0295-5075/102/60004.
[20] Jiang J W, Park H S. Negative poisson’s ratio in single-layer black phosphorus[J]. Nature Communications, 2014, 5: 4727. DOI:10.1038/ncomms5727.

Memo

Memo:
Biographies: Wu Junwei(1993—), male, graduate; Chen Yunfei(corresponding author), male, doctor, professor, yunfeichen@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51575104).
Citation: Wu Junwei, Tao Yi, Chen Chen, et al. Molecular dynamics simulations of strain-dependent thermal conductivity of single-layer black phosphorus [J].Journal of Southeast University(English Edition), 2018, 34(1):43-47.DOI:10.3969/j.issn.1003-7985.2018.01.007.
Last Update: 2018-03-20