|Table of Contents|

[1] Cao Chong, Huang Juan, Hu Qian, Cai Wenshu, et al. Migration of silver nanoparticles in an aquatic systemwith Eichhornia crassipes [J]. Journal of Southeast University (English Edition), 2018, 34 (2): 269-275. [doi:10.3969/j.issn.1003-7985.2018.02.017]
Copy

Migration of silver nanoparticles in an aquatic systemwith Eichhornia crassipes()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 2
Page:
269-275
Research Field:
Environmental Science and Engineering
Publishing date:
2018-06-20

Info

Title:
Migration of silver nanoparticles in an aquatic systemwith Eichhornia crassipes
Author(s):
Cao Chong Huang Juan Hu Qian Cai Wenshu
School of Civil Engineering, Southeast University, Nanjing 210096, China
Keywords:
silver nanoparticles aquatic system migration sedimentation plant uptake
PACS:
X503.23
DOI:
10.3969/j.issn.1003-7985.2018.02.017
Abstract:
The migration and dissolution of AgNPs in an aquatic system with plants was investigated. By using a hydroponic system with Eichhornia crassipes, the absorption and transportation processes of silver nanoparticles were investigated. The results show that AgNPs concentrations in the water phase declined with the increase in time, and the reduction degree was dependent on the initial concentrations of AgNPs. The silver concentrations in the roots(r=0.98, p<0.05), stems and leaves(r=1, p<0.001)were significantly positively correlated with the initial concentrations of AgNPs. Silver nanoparticles accumulated in plant roots more than stems and leaves. Compared with the addition of AgNO3 at identical concentrations, lower removal rates of silver and plant uptake were observed in the AgNPs stress systems. A significant positive correlation was also found between the initial AgNPs concentrations and the removed amount of silver(r=0.99, p<0.001). For AgNPs, the primary removal mechanisms in these aquatic systems were agglomeration and sedimentation, while the absorption by plants had a relatively weak contribution.

References:

[1] Vance M E, Kuiken T, Vejerano E P, et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 2015, 6: 1769-1780. DOI: 10.3762/bjnano.6.181.
[2] Hou L, Li K, Ding Y, et al. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction[J]. Chemosphere, 2012, 87(3): 248-252. DOI:10.1016/j.chemosphere.2011.12.042.
[3] García A, Delgado L, Torá J A, et al. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment [J]. Journal of Hazardous Materials, 2012, 199-200: 64-72. DOI:10.1016/j.jhazmat.2011.10.057.
[4] Syu Y Y, Hung J H, Chen J C, et al. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression [J]. Plant Physiology and Biochemistry, 2014, 83: 57-64. DOI:10.1016/j.plaphy.2014.07.010.
[5] Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi [J]. Ecotoxicology, 2008, 17(5): 372-386. DOI:10.1007/s10646-008-0214-0.
[6] Maurer-Jones M A, Gunsolus I L, Murphy C J, et al. Toxicity of engineered nanoparticles in the environment [J]. Anal Chem, 2013, 85(6): 3036-3049. DOI:10.1021/ac303636s.
[7] Wiechers J W, Musee N. Engineered inorganic nanoparticles and cosmetics: Facts, issues, knowledge gaps and challenges [J]. Journal of Biomedical Nanotechnology, 2010, 6(5): 408-431. DOI:10.1166/jbn.2010.1143.
[8] Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles [J]. Environmental Science & Technology, 2008, 42(15): 5580-5585. DOI:10.1021/es800422x.
[9] Lee J G, Wang Q, Yao Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis Thaliana [J]. Nanotoxicology, 2013, 7(3): 323-337. DOI:10.3109/17435390.2012.658094.
[10] Lee J G, Brooks M, Gerfen J R, et al. Reproductive toxicity and life history study of silver nanoparticle effect, uptake ad transport in Arabidopsis thaliana [J]. Nanomaterials, 2014, 4(4): 301-318. DOI:10.3390/nano4020301.
[11] Harris A T, Bali R. On the formation and extent of uptake of silver nanoparticles by live plants [J]. Journal of Nanoparticle Research, 2008, 10(4): 691-695. DOI:10.1007/s11051-007-9288-5.
[12] Marciano A, Chefetz B, Gedanken A. Differential adsorption of silver nanoparticles to the inner and outer surfaces of the Agave americana cuticle [J]. The Journal of Physical Chemistry C, 2008, 112(46): 18082-18086. DOI:10.1021/jp806654a.
[13] Quah B, Musante C, White J C, et al. Phytotoxicity, uptake, and accumulation of silver with different particle sizes and chemical forms [J]. Journal of Nanoparticle Research, 2015, 17: 277. DOI:10.1007/s11051-015-3079-1.
[14] Vymazzl J. Plants used in constructed wetlands withy horizontal subsurface flow: A review [J]. Hydrobiologia, 2011, 674(1): 133-156. DOI:10.1007/s10750-011-0738-9.
[15] Sopjani M, Foller M, Haendeler J, et al. Silver ion-induced suicidal erythrocyte death[J]. Journal of Applied Toxicology, 2009, 29(6): 531-536. DOI:10.1002/jat.1438.
[16] Levard C, Hotze E M, Lowry G V, et al. Environmental transformations of silver nanoparticles: Impact on stability and toxicity[J]. Environmental Science & Technology, 2012, 46(13): 6900-6914. DOI:10.1021/es2037405.
[17] Levard C, Mitra S, Yang T, et al. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. Coli [J]. Environmental Science & Technology, 2013, 47(11): 5738-5745. DOI:10.1021/es400396f.
[18] Westerhoff P, Song G X, Hristovski K, et al. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials [J]. Journal of Environmental Monitoring, 2011, 13(5): 1195-1203.DOI:10.1039/c1em10017c.
[19] Yin, L Y, Cheng, Y W, Espinasse, B, et al. More than the ions: The effects of silver nanoparticles on Lolium multiflorum [J]. Environmental Science & Technology, 2011, 45(6): 2360-2367. DOI:10.1021/es103995x.
[20] Unrine J M, Colman B P, Bone A J, et al. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution [J]. Environmental Science & Technology, 2012, 46(13): 6915-6924. DOI:10.1021/es204682q.
[21] Nason J A, McDowell S A, Callahan T W. Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles[J]. Journal of Environmental Monitoring, 2012, 14(7): 1885-1892. DOI:10.1039/c2em00005a.
[22] Lee W M, Kwak J I, An Y J. Effect of silver nanoparticles in crop plants Phaseolusradiatus and Sorghum bicolor: Media effect on phytotoxicity [J]. Chemosphere, 2012, 86(5): 491-499. DOI:10.1016/j.chemosphere.2011.10.013.
[23] Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa [J]. Science of the Total Environment, 2009, 407(19): 5243-5246. DOI:10.1016/j.scitotenv.2009.06.024.
[24] Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport [J]. Plant, Cell & Environment, 2009, 32(5): 577-584. DOI:10.1111/j.1365-3040.2009.01952.x.
[25] Tan X, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells[J]. Carbon, 2009, 47(15): 3479-3487. DOI:10.1016/j.carbon.2009.08.018.

Memo

Memo:
Biographies: Cao Chong(1991—), male, Ph.D.candidate; Huang Juan(corresponding author), female, doctor, associate professor, 101010942@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51479034, 5151101102), Fundamental Research Funds for the Central Universities(No.2242016R30008).
Citation: Cao Chong, Huang Juan, Hu Qian, et al. Migration of silver nanoparticles in an aquatic system with Eichhornia crassipes[J].Journal of Southeast University(English Edition), 2018, 34(2):269-275.DOI:10.3969/j.issn.1003-7985.2018.02.017.
Last Update: 2018-06-20