[1] Vance M E, Kuiken T, Vejerano E P, et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 2015, 6: 1769-1780. DOI: 10.3762/bjnano.6.181.
[2] Hou L, Li K, Ding Y, et al. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction[J]. Chemosphere, 2012, 87(3): 248-252. DOI:10.1016/j.chemosphere.2011.12.042.
[3] García A, Delgado L, Torá J A, et al. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment [J]. Journal of Hazardous Materials, 2012, 199-200: 64-72. DOI:10.1016/j.jhazmat.2011.10.057.
[4] Syu Y Y, Hung J H, Chen J C, et al. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression [J]. Plant Physiology and Biochemistry, 2014, 83: 57-64. DOI:10.1016/j.plaphy.2014.07.010.
[5] Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi [J]. Ecotoxicology, 2008, 17(5): 372-386. DOI:10.1007/s10646-008-0214-0.
[6] Maurer-Jones M A, Gunsolus I L, Murphy C J, et al. Toxicity of engineered nanoparticles in the environment [J]. Anal Chem, 2013, 85(6): 3036-3049. DOI:10.1021/ac303636s.
[7] Wiechers J W, Musee N. Engineered inorganic nanoparticles and cosmetics: Facts, issues, knowledge gaps and challenges [J]. Journal of Biomedical Nanotechnology, 2010, 6(5): 408-431. DOI:10.1166/jbn.2010.1143.
[8] Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles [J]. Environmental Science & Technology, 2008, 42(15): 5580-5585. DOI:10.1021/es800422x.
[9] Lee J G, Wang Q, Yao Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis Thaliana [J]. Nanotoxicology, 2013, 7(3): 323-337. DOI:10.3109/17435390.2012.658094.
[10] Lee J G, Brooks M, Gerfen J R, et al. Reproductive toxicity and life history study of silver nanoparticle effect, uptake ad transport in Arabidopsis thaliana [J]. Nanomaterials, 2014, 4(4): 301-318. DOI:10.3390/nano4020301.
[11] Harris A T, Bali R. On the formation and extent of uptake of silver nanoparticles by live plants [J]. Journal of Nanoparticle Research, 2008, 10(4): 691-695. DOI:10.1007/s11051-007-9288-5.
[12] Marciano A, Chefetz B, Gedanken A. Differential adsorption of silver nanoparticles to the inner and outer surfaces of the Agave americana cuticle [J]. The Journal of Physical Chemistry C, 2008, 112(46): 18082-18086. DOI:10.1021/jp806654a.
[13] Quah B, Musante C, White J C, et al. Phytotoxicity, uptake, and accumulation of silver with different particle sizes and chemical forms [J]. Journal of Nanoparticle Research, 2015, 17: 277. DOI:10.1007/s11051-015-3079-1.
[14] Vymazzl J. Plants used in constructed wetlands withy horizontal subsurface flow: A review [J]. Hydrobiologia, 2011, 674(1): 133-156. DOI:10.1007/s10750-011-0738-9.
[15] Sopjani M, Foller M, Haendeler J, et al. Silver ion-induced suicidal erythrocyte death[J]. Journal of Applied Toxicology, 2009, 29(6): 531-536. DOI:10.1002/jat.1438.
[16] Levard C, Hotze E M, Lowry G V, et al. Environmental transformations of silver nanoparticles: Impact on stability and toxicity[J]. Environmental Science & Technology, 2012, 46(13): 6900-6914. DOI:10.1021/es2037405.
[17] Levard C, Mitra S, Yang T, et al. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. Coli [J]. Environmental Science & Technology, 2013, 47(11): 5738-5745. DOI:10.1021/es400396f.
[18] Westerhoff P, Song G X, Hristovski K, et al. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials [J]. Journal of Environmental Monitoring, 2011, 13(5): 1195-1203.DOI:10.1039/c1em10017c.
[19] Yin, L Y, Cheng, Y W, Espinasse, B, et al. More than the ions: The effects of silver nanoparticles on Lolium multiflorum [J]. Environmental Science & Technology, 2011, 45(6): 2360-2367. DOI:10.1021/es103995x.
[20] Unrine J M, Colman B P, Bone A J, et al. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution [J]. Environmental Science & Technology, 2012, 46(13): 6915-6924. DOI:10.1021/es204682q.
[21] Nason J A, McDowell S A, Callahan T W. Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles[J]. Journal of Environmental Monitoring, 2012, 14(7): 1885-1892. DOI:10.1039/c2em00005a.
[22] Lee W M, Kwak J I, An Y J. Effect of silver nanoparticles in crop plants Phaseolusradiatus and Sorghum bicolor: Media effect on phytotoxicity [J]. Chemosphere, 2012, 86(5): 491-499. DOI:10.1016/j.chemosphere.2011.10.013.
[23] Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa [J]. Science of the Total Environment, 2009, 407(19): 5243-5246. DOI:10.1016/j.scitotenv.2009.06.024.
[24] Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport [J]. Plant, Cell & Environment, 2009, 32(5): 577-584. DOI:10.1111/j.1365-3040.2009.01952.x.
[25] Tan X, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells[J]. Carbon, 2009, 47(15): 3479-3487. DOI:10.1016/j.carbon.2009.08.018.