[1] Dejaeger K, Verbeke W, Martens D, et al. Data mining techniques for software effort estimation: A comparative study[J]. IEEE Transactions on Software Engineering, 2012, 38(2): 375-397.
[2] Keung J. Software development cost estimation using analogy: A review[C]//Australian Software Engineering Conference. Gold Cost, Australia, 2009:327-336.
[3] Idri A, Amazal F, Abran A. Analogy-based software development effort estimation: A systematic mapping and review[J]. Information and Software Technology, 2015, 58:206-230. DOI:10.1016/j.infsof.2014.07.013.
[4] Idri A, Hosni M, Abran A. Improved estimation of software development effort using classical and fuzzy analogy ensembles[J]. Applied Soft Computing, 2016, 49:990-1019. DOI:10.1016/j.asoc.2016.08.012.
[5] Kolodner J. Case-based reasoning[M]. San Francisco, USA: Morgan Kaufmann Publisher, 1993.
[6] Shepperd M, Schofield C. Estimating software project effort using analogies[J]. IEEE Transactions on Software Engineering, 1997, 23(11): 736-743. DOI:10.1109/32.637387.
[7] Kirsopp C, Shepperd M J, Hart J. Search heuristics, case-based reasoning and software project effort prediction[C]//Genetic and Evolutionary Computation Conference. New York, USA, 2002:1367-1374.
[8] Li Y F, Xie M, Goh T N.A study of mutual information based feature selection for case based reasoning in software cost estimation[J].Expert Systems with Applications, 2009, 36(3):5921-5931.DOI:10.1016/j.eswa.2008.07.062.
[9] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. DOI:10.1109/4235.996017.
[10] Phannachitta P, Keung J, Monden A, et al. A stability assessment of solution adaptation techniques for analogy-based software effort estimation[J]. Empirical Software Engineering, 2017, 22(1): 474-504. DOI:10.1007/s10664-016-9434-8.
[11] Huang J, Li Y F, Xie M. An empirical analysis of data preprocessing for machine learning-based software cost estimation[J].Information and Software Technology, 2015, 67:108-127. DOI:10.1016/j.infsof.2015.07.004.
[12] Jing X Y, Qi F, Wu F, et al. Missing data imputation based on low-rank recovery and semi-supervised regression for software effort estimation[C]//International Conference on Software Engineering. Austin, USA, 2016:607-618.
[13] Chen Z, Menzies T, Port D, et al. Feature subset selection can improve software cost estimation accuracy[J]. ACM SIGSOFT Software Engineering Notes, 2005, 30(4): 1-6. DOI:10.1145/1082983.1083171.
[14] Mendes E, Watson I, Triggs C, et al. A comparative study of cost estimation models for web hypermedia applications[J]. Empirical Software Engineering, 2003, 8(2):163-196.DOI:10.1023/A:1023062629183.
[15] Harman M, Mansouri S A, Zhang Y. Search-based software engineering: Trends, techniques and applications[J]. ACM Computing Surveys, 2012, 45(1)::1-61. DOI:10.1145/2379776.2379787.
[16] Shepperd M, MacDonell S. Evaluating prediction systems in software project estimation[J]. Information and Software Technology, 2012, 54(8):820-827.DOI:10.1016/j.infsof.2011.12.008.
[17] Langdon W B, Dolado J, Sarro F, et al. Exact mean absolute error of baseline predictor, MARP0[J]. Information and Software Technology, 2016, 73:16-18.DOI:10.1016/j.infsof.2016.01.003.
[18] Mair C, Kadoda G, Lefley M, et al. An investigation of machine learning based prediction systems[J]. Journal of Systems and Software, 2000, 53(1):23-29.DOI:10.1016/s0164-1212(00)00005-4.
[19] Sentas P, Angelis L, Stamelos I, et al. Software productivity and effort prediction with ordinal regression[J]. Information and Software Technology, 2005, 47(1):17-29. DOI:10.1016/j.infsof.2004.05.001.
[20] Li J Z, Ruhe G, Al-Emran A, et al. A flexible method for effort estimation by analogy[J]. Empirical Software Engineering, 2007, 12(1):65-106. DOI:10.1007/s10664-006-7552-4.
[21] Qi F, Jing X Y, Zhu X, et al. Software effort estimation based on open source projects:Case study of Github[J]. Information and Software Technology, 2017, 92:145-157. DOI:10.1016/j.infsof.2017.07.015.
[22] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4):257-271. DOI:10.1109/4235.797969.