[1] Darbha S, Rajagopal K R.Intelligent cruise control systems and traffic flow stability[J]. Transportation Research Part C: Emerging Technologies, 1999, 7(6):329-352. DOI:10.1016/S0968-090X(99)00024-8.
[2] Pipes L A. An operational analysis of traffic dynamics[J]. Journal of Applied Physics, 1953, 24(3): 274-281. DOI:10.1063/1.1721265.
[3] Lakouari N, Bentaleb K, Ez-Zahraouy H, et al. Correlation velocities in heterogeneous bidirectional cellular automata traffic flow[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 439: 132-141. DOI:10.1016/j.physa.2015.07.024.
[4] Li Y, Wang H, Wang W, et al. Evaluation of the impacts of cooperative adaptive cruise control onreducing rear-end collision risks on freeways[J]. School Accident Analysis and Prevention, 2017, 98: 87-95. DOI:10.1016/j.aap.2016.09.015.
[5] Kesting A, Treiber M, Schönhof M, et al. Adaptive cruise control design for active congestion avoidance[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(6): 668-683. DOI:10.1016/j.trc.2007.12.004.
[6] Liu F X, Cheng R J, Ge H X, et al. An improved car-following model considering the influence of optimal velocity for leading vehicle[J]. Nonlinear Dynamics, 2016, 85(3): 1469-1478. DOI:10.1007/s11071-016-2772-7.
[7] Zhou T, Sun D H, Kang Y R, et al.A new car-following model with consideration of the prevision driving behavior[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(10): 3820-3826. DOI:10.1016/j.cnsns.2014.03.012.
[8] van Arem B, van Driel C J G, Visser R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 429-436. DOI:10.1109/tits.2006.884615.
[9] Lidström K, Sjöberg K, Holmberg U, et al. A modular CACC system integration and design[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3):1050-1061.DOI:10.1109/tits.2012.2204877.
[10] Milanés V, Shladover S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C, 2014, 48: 285-300. DOI:10.1016/j.trc.2014.09.001.
[11] Yu S W, Shi Z K. An extended car-following model at signalized intersections[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 407: 152-159. DOI:10.1016/j.physa.2014.03.081.
[12] Gu H Y, Jin P J, Wan X, et al. A leading vehicle model for comfortable acceleration among cooperative adaptive cruise control(CACC)vehicle platoons[C]//Transportation Research Board 94th Annual Meeting. Washington, DC, USA, 2014:5215-5232.
[13] Darbha S, Rajagopal K R.Intelligent cruise control systems and traffic flow stability[J]. Transportation Research Part C: Emerging Technologies, 1999, 7(6):329-352. DOI:10.1016/S0968-090X(99)00024-8.
[14] van Arem B, de Vos A P, Vanderschuren M. The microscopic traffic simulation model MIXIC 1.3[R]. Washington, DC, USA: TRID, 1997.
[15] Hua X D, Wang W, Wang H. A car-following model with the consideration of vehicle-to-vehicle communication technology[J]. Acta Physica Sinica, 2016, 65(1):010502-1-010502-12.
[16] Zheng L. Detailed string stability analysis for bi-directional optimal velocity model[J]. Journal of Central South University, 2015, 22(4): 1563-1573. DOI:10.1007/s11771-015-2673-9.
[17] Naus G J L, Vugts R P A, Ploeg J, et al. String-stable CACC design and experimental validation:A frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9):4268-4279. DOI:10.1109/tvt.2010.2076320.
[18] Guo G, Yue W. Autonomous platoon control allowing range-limited sensors[J]. IEEE Transactions on Vehicular Technology, 2012, 61(7):2901-2912. DOI:10.1109/tvt.2012.2203362.
[19] Seiler P, Pant A, Hedrick K. Disturbance propagation in vehicle strings[J]. IEEE Transactions on Automatic Control, 2004, 49(10):1835-1841. DOI:10.1109/tac.2004.835586.
[20] Shaw E, Hedrick J K. Controller design for string-stable heteroge-neous vehicle strings[C]// 46th IEEE Conference on Decision and Control. New Orleans, LA, USA, 2008:2868-2875. DOI:10.1109/CDC.2007.4435011.
[21] Kianfar R, Augusto B, Ebadighajari A, et al. Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3):994-1007. DOI:10.1109/tits.2012.2186513.
[22] Naus G, Vugts R, Ploeg J, et al. Towards on-the-road implementation of cooperative adaptive cruise control[C]//16th ITS World Congress and Exhibition on Intelligent Transport Systems and Services. Stockholm, Sweden, 2009, 58(8):6145-6150.
[23] Ngoduy D.Analytical studies on the instabilities of heterogeneous intelligent traffic flow[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(10): 2699-2706. DOI:10.1016/j.cnsns.2013.02.018.
[24] Orosz G, Wilson R E, Stépán G. Traffic jams: Dynamics and control[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical & Engineering Sciences, 2010, 368(1928):4455-4479.
[25] Shladover S, Vanderwerf J, Miller M A, et al. Development and performance evaluation of AVCSS deployment sequences to advance from today’s driving environment to full automation[J]. Inorganic Chemistry, 2001, 46(1):93-102.
[26] Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824. DOI:10.1103/physreve.62.1805.
[27] Sheikholeslam S, Desoer C A. Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: A system level study[J]. IEEE Transactions on Vehicular Technology, 1993, 42(4):546-554. DOI:10.1109/25.260756.
[28] Liang C Y, Peng H. String stability analysis of adaptive cruise controlled vehicles[J].JSME International Journal Series C, 2000, 43(3):671-677. DOI:10.1299/jsmec.43.671.