[1] Barry J J, Newhouser R, Rahbee A, et al. Origin and destination estimation in New York city with automated fare system data [J]. Transportation Research Record: Journal of the Transportation Research Board, 2002, 1817: 183-187. DOI:10.3141/1817-24.
[2] Zhao J H, Rahbee A, Wilson N H M. Estimating a rail passenger trip origin-destination matrix using automatic data collection systems[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22(5): 376-387. DOI:10.1111/j.1467-8667.2007.00494.x.
[3] Chan J. Rail transit OD matrix estimation and journey time reliability metrics using automated fare data [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2007.
[4] Rao H. Real-time estimation and prediction of OD matrix for public passenger flow based on AFC data [D]. Nanjing: Southeast University, 2014.(in Chinese)
[5] Yao X M, Zhao P, Yu D D. Real-time origin-destination matrices estimation for urban rail transit network based on structural state-space model[J]. Journal of Central South University, 2015, 22(11): 4498-4506. DOI:10.1007/s11771-015-2998-4.
[6] Nagy V. Theoretical method for building OD matrix from AFC data[J].Transportation Research Procedia, 2016, 14: 1802-1808. DOI:10.1016/j.trpro.2016.05.146.
[7] Hasan S, Schneider C M, Ukkusuri S V, et al. Spatiotemporal patterns of urban human mobility[J].Journal of Statistical Physics, 2013, 151(1/2): 304-318. DOI:10.1007/s10955-012-0645-0.
[8] Sun Y S, Shi J G, Schonfeld P M. Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: A case study of Shanghai Metro[J]. Public Transport, 2016, 8(3): 341-363. DOI:10.1007/s12469-016-0137-8.
[9] Ma L. Analysis and evaluation of passenger flow operation state in urban railway transit hub [D]. Beijing: Beijing Jiaotong University, 2009.(in Chinese)
[10] Huang H C. Research on safety evaluation of passenger flow of railway passenger integrated transport hub [D]. Nanjing: Southeast University, 2011.(in Chinese)
[11] Xu X, Ma Y N, Li T, et al. Risk early-warning study of passenger flow in business district [C]//2010 IEEE International Conference on Emergency Management and Management Sciences(ICEMMS). Beijing, China, 2010: 310-313.
[12] Li T, Jin L Z, Ma Y N, et al. Study on method for monitoring and early-warning of passenger flow in large-scale activities[J]. Journal of Safety Science and Technology, 2012, 8(4): 75-80. DOI:10.3969/j.issn.1673-193X.2012.04.014. (in Chinese)
[13] Xu R H, Ye J M, Pan H C, et al. Method for early warning of heavy passenger flow at transfer station of urban rail transit network under train delay[J]. China Railway Science, 2014, 35(5): 127-133. DOI:10.3969/j.issn.1001-4632.2014.05.18. (in Chinese)
[14] Davidich M, Geiss F, Mayer H G, et al. Waiting zones for realistic modelling of pedestrian dynamics: A case study using two major German railway stations as examples[J].Transportation Research Part C: Emerging Technologies, 2013, 37: 210-222. DOI:10.1016/j.trc.2013.02.016.
[15] Seriani S, Fernández R. Planning guidelines for metro-bus interchanges by means of a pedestrian microsimulation model[J]. Transportation Planning and Technology, 2015, 38(5): 569-583. DOI:10.1080/03081060.2015.1039235.
[16] Fernández R, Valencia A, Seriani S. On passenger saturation flow in public transport doors [J]. Transportation Research Part A: Policy and Practice, 2015, 78: 102-112.DOI:10.1016/j.tra.2015.05.001.