|Table of Contents|

[1] Nguyen Van Liem, Zhang Jianrun, Hua Wenlin, et al. Ride quality evaluation of the soil compactor cab supplementedby auxiliary hydraulic mounts via simulation and experiment [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 273-280. [doi:10.3969/j.issn.1003-7985.2019.03.001]
Copy

Ride quality evaluation of the soil compactor cab supplementedby auxiliary hydraulic mounts via simulation and experiment()
基于振动压路机驾驶室辅助液阻隔振的平顺性仿真与实验
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 3
Page:
273-280
Research Field:
Traffic and Transportation Engineering
Publishing date:
2019-09-30

Info

Title:
Ride quality evaluation of the soil compactor cab supplementedby auxiliary hydraulic mounts via simulation and experiment
基于振动压路机驾驶室辅助液阻隔振的平顺性仿真与实验
Author(s):
Nguyen Van Liem1 2 Zhang Jianrun1 Hua Wenlin2 Wang Peiling2
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
阮文廉1 2 张建润1 华文林2 王培玲2
1东南大学机械工程学院, 南京211189; 2湖北理工学院机电工程学院, 黄石435003
Keywords:
off-road soil compactor dynamic model cab’s rubber mounts auxiliary hydraulic mount ride quality
振动压力机 动力学模型 驾驶室橡胶隔振 辅助液压隔振 平顺性
PACS:
U461.3
DOI:
10.3969/j.issn.1003-7985.2019.03.001
Abstract:
In order to evaluate the ride quality of the soil compactor cab supplemented by the auxiliary hydraulic mounts(AHM), a nonlinear dynamic model of the soil compactor interacting with the off-road deformable terrain is established based on Matlab/Simulink sofware. The power spectral density(PSD)and the weighted root mean square(RMS)of acceleration responses of the vertical driver’s seat, the cab’s pitch and roll angle are chosen as objective functions in low-frequency range. Experimental investigation is also used to verify the accuracy of the model. The influence of the damping coefficients of the AHM on the cab’s ride quality is analyzed, and damping coefficients are then optimized via a genetic algorithm program. The research results show that the cab’s rubber mounts added by the AHM clearly improve the ride quality under various operating conditions. Particularly, with the optimal damping coefficients of the front-end mounts ca1, 2 = 1 500 N·s/m and of the rear-end mounts ca3, 4 =2 335 N·s/m, the weighted RMS values of the driver’s seat, the cab’s pitch and roll angle are reduced by 22.2%, 18.8%, 58.7%, respectively. Under the condition of the vehicle travelling, with the optimal damping coefficients of ca1, 2 = 1 500 N·s/m and ca3, 4 =1 882 N·s/m, the maximum PSD values of the driver’s seat, the cab’s pitch and roll angle are clearly decreased by 36.7%, 54.7% and 50.6% under the condition of the vehicle working.
为了评价振动压路机驾驶室辅助液力的平顺性, 基于Matlab/Simulink软件建立了振动压路机与变形土壤地面相互作用的非线性动力学模型.以加速度加权均方根值(RMS)和加速度功率谱密度(PSD)响应为目标函数, 对不同工况下驾驶员座椅垂向低频振动, 驾驶室的俯仰和倾斜低频晃动进行了仿真分析.同时进行了试验以验证模型的准确性.分析了辅助液压隔振的阻尼参数对驾驶室乘坐舒适性的影响, 并通过遗传算法对阻尼系数进行优化.研究结果表明, 在不同工况条件下, 驾驶室橡胶隔振辅助液压隔振对振动压路机的舒适性均有较大的改善.特别地, 在车辆行驶条件下, 辅助液压隔振的优化阻尼系数为ca1, 2 = 1 500 N·s/m和ca3, 4 = 2 335 N·s/m;驾驶室座椅垂向振动, 驾驶室的俯仰和倾斜晃动的加速度加权均方根值分别降低了22.2%, 18.8% 和 58.7%;在车辆工作条件下, 辅助液压隔振的优化阻尼系数为ca1, 2 =1 500 N·s/m和ca3, 4 =1 882 N·s/m;驾驶室座椅垂向振动, 驾驶室的俯仰和倾斜晃动的最大PSD值分别降低了36.7%, 54.7% 和 50.6%.

References:

[1] Bekker M. Introduction to terrain-vehicle systems[M]. Ann Arbor, USA: University of Michigan Press, 1969.
[2] Wong J. Theory of ground vehicles[M]. New York, NY, USA: John Wiley & Sons, 2001.
[3]Mitschke M. Dynamik der Kraftfahrzeuge[M]. Berlin: Springer-Verlag, 1972. DOI:10.1007/978-3-662-11585-5.
[4] Nguyen V L, Zhang J R, Jiao R Q et al. Effect of the off-road terrains on the ride comfort of construction vehicles[J]. Journal of Southeast University(English Edition), 2019, 35(2): 191-197. DOI:10.3969/j.issn.1003-7985.2019.02.008.
[5] Adam D, Kopf F. Theoretical analysis of dynamically loaded soils[C]//Proceedings of European Workshop Compaction of Soils and Granular Materials. Paris, France, 2000: 207-220.
[6] Nguyen V L, Zhang J R, Le V Q, et al. Vibration analysis and modeling of an off-road vibratory roller equipped with three different cab’s isolation mounts [J]. Shock and Vibration, 2018, 2018:8527574-1-8527574-17. DOI: 10.1155/2018/8527574.
[7] Kordestani A, Rakheja S, Marcotte P, et al. Analysis of ride vibration environment of soil compactors[J]. SAE International Journal of Commercial Vehicles, 2010, 3(1): 259-272. DOI:10.4271/2010-01-2022.
[8] Li J Q, Zhang Z F, Xu H G, et al. Dynamic characteristics of the vibratory roller test-bed vibration isolation system: Simulation and experiment[J]. Journal of Terramechanics, 2014, 56: 139-156. DOI:10.1016/j.jterra.2014.10.002.
[9] Le V Q, Nguyen K T. Optimal design parameters of cab’s isolation system for vibratory roller using a multi-objective genetic algorithm[J]. Applied Mechanics and Materials, 2018, 875: 105-112. DOI:10.4028/www.scientific.net/amm.875.105.
[10] International Organization for Standardization. ISO/TC108/SC2/WG4 N57 Reporting vehicle road surface irregularities [S]. Stuttgart, Germany: Thieme Medical Publishers, 1982.
[11] International Organization for Standardization. ISO 2631-1 Mechanical vibration and shock—Evaluation of human exposure to whole body vibration—Part 2: General requirement [S]. Geneva, Switzerland: International Organization for Standardization, 1997.
[12] Nariman-Zadeh N, Salehpour M, Jamali A, et al. Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm(MUGA)[J]. Engineering Applications of Artificial Intelligence, 2010, 23(4): 543-551. DOI:10.1016/j.engappai.2009.08.008.
[13] Crews J H, Mattson M G, Buckner G D. Multi-objective control optimization for semi-active vehicle suspensions[J]. Journal of Sound and Vibration, 2011, 330(23): 5502-5516. DOI:10.1016/j.jsv.2011.05.036.
[14] Wang W, Song Y L, Xue Y B, et al. An optimal vibration control strategy for a vehicle’s active suspension based on improved cultural algorithm[J]. Applied Soft Computing, 2015, 28: 167-174. DOI:10.1016/j.asoc.2014.11.047.

Memo

Memo:
Biographies: Nguyen Van Liem(1986—), male, doctor; Zhang Jianrun(corresponding author), male, doctor, professor, zhangjr@seu.edu.cn.
Foundation items: The Science and Technology Support Program of Jiangsu Province(No.BE2014133), the Prospective Joint Research Program of Jiangsu Province(No.BY2014127-01).
Citation: Nguyen Van Liem, Zhang Jianrun, Hua Wenlin, et al. Ride quality evaluation of the soil compactor cab supplemented by auxiliary hydraulic mounts via simulation and experiment[J].Journal of Southeast University(English Edition), 2019, 35(3):273-280.DOI:10.3969/j.issn.1003-7985.2019.03.001.
Last Update: 2019-09-20