|Table of Contents|

[1] Lin Guoying, Feng Xiaofeng, Lu Shixiang, et al. Revenue optimization strategy of V2G based on evolutionary game [J]. Journal of Southeast University (English Edition), 2020, 36 (1): 50-55. [doi:10.3969/j.issn.1003-7985.2020.01.007]
Copy

Revenue optimization strategy of V2G based on evolutionary game()
基于演化博弈的V2G收益优化策略
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 1
Page:
50-55
Research Field:
Electrical Engineering
Publishing date:
2020-03-20

Info

Title:
Revenue optimization strategy of V2G based on evolutionary game
基于演化博弈的V2G收益优化策略
Author(s):
Lin Guoying1 2 Feng Xiaofeng2 Lu Shixiang2
1College of Electrical Engineering, Zhejiang University, Hangzhou 310000, China
2Guangdong Power Grid Corporation, Guangzhou 510080, China
林国营1 2 冯小峰2 卢世祥2
1浙江大学电气工程学院, 杭州 310000; 2广东电力公司, 广州 510080
Keywords:
evolutionary game electric vehicle vehicle-to-grid electricity price
演化博弈 电动汽车 车联网(V2G) 电价
PACS:
TM732
DOI:
10.3969/j.issn.1003-7985.2020.01.007
Abstract:
In order to protect the interests of electric vehicle users and grid companies with vehicle-to-grid(V2G)technology, a reasonable electric vehicle discharge electricity price is established through the evolutionary game model. A game model of power grid companies and electric vehicle users based on the evolutionary game theory is established to balance the revenue of both players in the game. By studying the dynamic evolution process of both sides of the game, the range of discharge price that satisfies the interests of both sides is obtained. The results are compared with those obtained by the static Bayesian game. The results show that the discharge price which can benefit both sides of the game exists in a specific range. According to the setting of the example, the reasonable discharge electricity price is 1.106 0 to 1.481 1 yuan/(kW·h). Only within this range can the power grid company and electric vehicle users achieve positive interactions. In addition, the evolutionary game model is easier to balance the interests of the two players than the static Bayesian game.
为了保障车联网(V2G)技术下的电动汽车用户利益和电网公司收益, 通过演化博弈模型制定合理的电动汽车放电电价.以博弈双方收益平衡为目标, 建立了基于演化博弈理论的电网公司和电动汽车用户的博弈模型.通过研究博弈双方的动态演化过程, 得出可以满足双方利益的电动汽车放电电价的范围, 并且与静态博弈获得的结果进行对比.算例结果表明可以使博弈双方共同受益的放电价格仅存在于特定范围内.根据本算例设定, 合理的放电电价是1.106 0~1.481 1元/(kW·h), 只有在该范围内电网公司和电动车用户才能实现积极的互动.此外, 演化博弈比静态博弈更容易促成博弈双方收益平衡.

References:

[1] Shekhar A, Prasanth V, Bauer P, et al. Economic viability study of an on-road wireless charging system with a generic driving range estimation method[J]. Energies, 2016, 9(2): 76. DOI:10.3390/en9020076.
[2] Zhang J, Gao F, Xu S Q, et al. Energy internet technological architecture and case analysis[J]. Electric Power, 2018, 51(8): 24-30. DOI:10.11930/j.issn.1004-9649.201806128. (in Chinese)
[3] Clement-Nyns K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2010, 25(1): 371-380. DOI:10.1109/tpwrs.2009.2036481.
[4] Rassaei F, Soh W, Chua K. Demand response for residential electric vehicles with random usage patterns in smart grids[J].IEEE Transactions on Sustainable Energy, 2015, 6(4): 1367-1376. DOI:10.1109/tste.2015.2438037.
[5] Yang X D, Zhang Y B, Zhao B, et al. Automated demand response method for electric vehicles charging and discharging to achieve supply-demand coordinated optimization[J]. Proceedings of the CSEE, 2017, 37(1):120-130. DOI: 10.13334/j.0258-8013.pcsee.151936.
[6] Zhang S X, Li L F. Management mode of integrated construction of electric vehicle charging piles and municipal LED facilities[J]. Electric Power, 2017, 50(7): 43-48. DOI:10.11930/j.issn.1004-9649.2017.07.043.06. (in Chinese)
[7] Li C W, Liu J Y, Wei Z B. Research on electric vehicle discharge price based on game theory[J]. East China Electric Power, 2013, 41(6): 1329-1334. DOI:1001-9529(2013)06-1329-06. (in Chinese)
[8] Li M Q, Song Y Q, Yan Z, et al. Research on game model and algorithm for electric vehicle aggregations[J]. Power System Technology, 2014, 38(6): 1512-1517. DOI:10.13335/j.1000-3673.pst.2014.06.014. (in Chinese)
[9] Yang H L, Xie X Z, Vasilakos A V. Noncooperative and cooperative optimization of electric vehicle charging under demand uncertainty: A robust stackelberg game[J].IEEE Transactions on Vehicular Technology, 2016, 65(3): 1043-1058. DOI:10.1109/tvt.2015.2490280.
[10] Zhang L, Li Y Y. A game-theoretic approach to optimal scheduling of parking-lot electric vehicle charging[J].IEEE Transactions on Vehicular Technology, 2016, 65(6): 4068-4078. DOI:10.1109/tvt.2015.2487515.
[11] Tang W R, Zhang Y J. A model predictive control approach for low-complexity electric vehicle charging scheduling: Optimality and scalability[J].IEEE Transactions on Power Systems, 2017, 32(2): 1050-1063. DOI:10.1109/tpwrs.2016.2585202.
[12] Luo C, Huang Y, Gupta V. Stochastic dynamic pricing for EV charging stations with renewable integration and energy storage[J].IEEE Transactions on Smart Grid, 2018, 9(2): 1494-1505. DOI:10.1109/tsg.2017.2696493.
[13] Bahrami S, Toulabi M, Ranjbar S, et al. A decentralized energy management framework for energy hubs in dynamic pricing markets[J].IEEE Transactions on Smart Grid, 2018, 9(6): 6780-6792. DOI:10.1109/tsg.2017.2723023.
[14] Zhan K J, Hu Z C, Song Y H, et al. Electric vehicle coordinated charging hierarchical control strategy considering renewable energy generation integration[J]. Power System Technology, 2016, 40(12):3689-3695. DOI:10.13335/j.1000-3673.pst.2016.12.009. (in Chinese)
[15] Chen J P, Piao L J, Ai Q, et al. Hierarchical optimal scheduling for electric vehicles based on distributed control[J]. Automation of Electric Power Systems, 2016, 40(18):24-31. DOI:10.7500/AEPS20151002002. (in Chinese)
[16] Li X P, Geng G C, Jiang Q Y. A hierarchical energy management strategy for grid-connected microgrid[C]//2014 IEEE PES General Meeting. National Harbor, MD, USA, 2014:1-5. DOI:10.1109/pesgm.2014.6939515.
[17] Pan Z N, Zhang X S, Yu T, et al. Hierarchical real-time optimized dispatching for large-scale clusters of electric vehicles[J]. Automation of Electric Power Systems, 2017, 41(16): 96-104. DOI: DOI: 10.7500 /AEPS20160919012.(in Chinese)
[18] Jia L, Hu Z C, Song Y H. Considering the comprehensive planning of electric vehicle charging facilities in cities with different types of charging requirements[J]. Power System Technology, 2016, 40(9): 2579–2587.(in Chinese)
[19] Ma X F, Wang C, Hong X, et al. Optimization strategy of electric vehicle double-layer charging based on nodal blocking electricity price[J]. Power System Technology, 2016, 40(12): 3706-3716. DOI:10. 3969 /j.issn. 1000-7229. 2018. 01. 006. (in Chinese)
[20] Sun B, Wang Z X, Zhao W H. Analysis of discharge price based on the static Bayesian game[J]. Renewable Energy Resources, 2015, 33(11): 1686-1692. DOI:10.13941/j.cnki.21-1469/tk.2015.11.015. (in Chinese)

Memo

Memo:
Biography: Lin Guoying(1982—), male, doctor, senior engineer, yetqmwei@163.com.
Foundation item: The National Natural Science Foundation of China(No.51577028).
Citation: Lin Guoying, Feng Xiaofeng, Lu Shixiang.Revenue optimization strategy of V2G based on evolutionary game[J].Journal of Southeast University(English Edition), 2020, 36(1):50-55.DOI:10.3969/j.issn.1003-7985.2020.01.007.
Last Update: 2020-03-20