[1] van Peppen R P, Kwakkel G, Wood-Dauphinee S, et al. The impact of physical therapy on functional outcomes after stroke: What’s the evidence?[J]. Clinical Rehabilitation, 2004, 18(8): 833-862. DOI:10.1191/0269215504cr843oa.
[2] Lum P S, Burgar C G, Shor P C, et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke[J]. Archives of Physical Medicine and Rehabilitation, 2002, 83(7): 952-959. DOI:10.1053/apmr.2001.33101.
[3] Crockett H C, Gross L B, Wilk K E, et al. Osseous adaptation and range of motion at the glenohumeral joint in professional baseball pitchers[J]. The American Journal of Sports Medicine, 2002, 30(1): 20-26. DOI:10.1177/03635465020300011701.
[4] Nef T, Riener R. Shoulder actuation mechanisms for arm rehabilitation exoskeletons[C]//2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Scottsdale, AZ, USA, 2008: 862-868. DOI:10.1109/biorob.2008.4762794.
[5] Kim B, Deshpande A D. Controls for the shoulder mechanism of an upper-body exoskeleton for promoting scapulohumeral rhythm[C]//2015 IEEE International Conference on Rehabilitation Robotics. Singapore, 2015: 538-542. DOI:10.1109/icorr.2015.7281255.
[6] Thalagala T D R G, Silva S D K C, Maduwantha L K A H, et al. A 4 DOF exoskeleton robot with a novel shoulder joint mechanism[C]//2016 IEEE/SICE International Symposium on System Integration. Sapporo, Japan, 2016: 132-137. DOI:10.1109/sii.2016.7843987.
[7] Liu C, Zhu C, Liang H B, et al. Development of a light wearable exoskeleton for upper extremity augmentation[C]//2016 23rd International Conference on Mechatronics and Machine Vision in Practice. Nanjing, China, 2016: 1-6. DOI:10.1109/m2vip.2016.7827318.
[8] Yalcin M, Patoglu V. Kinematics and design of AssistOn-SE: a self-adjusting shoulder-elbow exoskeleton[C]//2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome, Italy, 2012: 1579-1585. DOI:10.1109/biorob.2012.6290928.
[9] Zhang L Y, Li J F, Su P, et al. Improvement of human-machine compatibility of upper-limb rehabilitation exoskeleton using passive joints[J]. Robotics and Autonomous Systems, 2019, 112: 22-31. DOI:10.1016/j.robot.2018.10.012.
[10] Li J F, Liu J H, Zhang L Y, et al. Kinematics and dexterity analysis of the human-machine compatible exoskeleton mechanism for shoulder joint rehabilitation[J]. Journal of Mechanical Engineering, 2018, 54(3): 46-54.(in Chinese)
[11] Lin P Y, Shieh W B, Chen D Z. A theoretical study of weight-balanced mechanisms for design of spring assistive mobile arm support(MAS)[J]. Mechanism and Machine Theory, 2013, 61: 156-167. DOI:10.1016/j.mechmachtheory.2012.11.003.
[12] Wu Q C, Wang X S, Du F P. Development and analysis of a gravity-balanced exoskeleton for active rehabilitation training of upper limb[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(20): 3777-3790. DOI:10.1177/0954406215616415.
[13] Klopcˇar N, Lenarcˇicˇ J. Bilateral and unilateral shoulder girdle kinematics during humeral elevation[J]. Clinical Biomechanics, 2006, 21: S20-S26. DOI:10.1016/j.clinbiomech.2005.09.009.
[14] Magermans D J, Chadwick E K J, Veeger H E J, et al. Requirements for upper extremity motions during activities of daily living[J]. Clinical Biomechanics, 2005, 20(6): 591-599. DOI:10.1016/j.clinbiomech.2005.02.006.
[15] Churchill E, Laubach L L, Mcconville J T, et al. Anthropometric source book. Volume 1: Anthropometry for Designers[M]. Houston: NASA. 1978: Ⅳ31-Ⅳ38.