[1] Hu Q L, Xiao B. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness [J]. Nonlinear Dynamics, 2011, 64(1/2): 13-23. DOI:10.1007/s11071-010-9842-z.
[2] Yu X, Jiang J. Fault-tolerant flight control system design against control surface impairments [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1031-1051. DOI:10.1109/taes.2012.6178047.
[3] Li H, Wu L, Si Y, et al. Multi-objective fault-tolerant output tracking control of a flexible air-breathing hypersonic vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2010, 224(6): 647-667. DOI:10.1243/09596518jsce1002.
[4] Shen Q, Jiang B, Cocquempot V. Fault diagnosis and estimation for near-space hypersonic vehicle with sensor faults[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2012, 226(3): 302-313. DOI:10.1177/0959651811421227.
[5] Zhao J, Jiang B, Shi P, et al. Fault-tolerant control design for near-space vehicles based on a dynamic terminal sliding mode technique[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2012, 226(6): 787-794. DOI:10.1177/0959651812437624.
[6] Crider L. Control of commercial aircraft with vertical tail loss[C]//AIAA 4th Aviation Technology, Integration and Operations(ATIO)Forum. Chicago, IL, USA, 2004. DOI:10.2514/6.2004-6293.
[7] Bramesfeld G, Maughmer M D, Willits S M. Piloting strategies for controlling a transport aircraft after vertical-tail loss[J]. Journal of Aircraft, 2006, 43(1): 216-225. DOI:10.2514/1.13357.
[8] Hitachi Y. Damage-tolerant control system design for propulsion-controlled aircraft [D]. Toronto, Canada: University of Toronto, 2009.
[9] Hitachi Y, Liu H.H-infinity-LTR technique applied to robust control of propulsion-controlled aircraft[C]//AIAA Guidance, Navigation, and Control Conference. Chicago, IL, USA, 2009. DOI:10.2514/6.2009-6176.
[10] Li X B, Liu H H T. A passive fault tolerant flight control for maximum allowable vertical tail damaged aircraft[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(3): 031006. DOI:10.1115/1.4005512.
[11] Verhaegen M, Kanev S, Hallouzi R, et al. Fault tolerant flight control—A survey [M]. Berlin, Germany: Springer-Verlag, 2010. DOI:10.1007/978-3-642-11690-2-2.
[12] Yu X, Li P, Zhang Y M. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4135-4144. DOI:10.1109/tie.2017.2772192.
[13] Hallouzi R, Verhaegen M. Fault-tolerant subspace predictive control applied to a Boeing 747 model[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 873-883. DOI:10.2514/1.33256.
[14] Hajiyev C, Caliskan F. Fault diagnosis and reconfiguration in flight control systems [M]. Boston, MA, USA: Springer-Verlag, 2003. DOI:10.1007/ 978-1-4419-9166-9.
[15] Isermann R. Fault-diagnosis systems: An introduction from fault detection to fault tolerance [M]. Berlin, Germany: Springer-Verlag, 2006. DOI: 10.1007/3-540-30368-5.
[16] Gao Z F, Jiang B, Shi P, et al. Active fault tolerant control design for reusable launch vehicle using adaptive sliding mode technique[J]. Journal of the Franklin Institute, 2012, 349(4): 1543-1560. DOI:10.1016/j.jfranklin.2011.11.003.
[17] Hu Q L. Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits[J]. Nonlinear Dynamics, 2009, 55(4): 301-321. DOI:10.1007/s11071-008-9363-1.
[18] Li P, Yu X, Zhang Y M, et al. Adaptive multivariable integral TSMC of a hypersonic gliding vehicle with actuator faults and model uncertainties[J]. ASME Transactions on Mechatronics, 2017, 22(6): 2723-2735. DOI:10.1109/tmech.2017.2756345.
[19] Yang H J, Xia Y Q, Fu M Y, et al. Robust adaptive sliding mode control for uncertain delta operator systems[J]. International Journal of Adaptive Control and Signal Processing, 2009, 24(8): 623-632. DOI:10.1002/acs.1154.
[20] Zhang J H, Shi P, Xia Y Q. Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(4): 700-711. DOI:10.1109/tfuzz.2010.2047506.
[21] Gao J, Shen Q, Yang P, et al. Sliding mode fault tolerant control with prescribed performance[J]. International Journal of Innovative Computing, Information and Control, 2017, 13(2): 687-694.
[22] Etkin B, Reid L D. Dynamics of flight: Stability and control [M]. New York, USA: John Wiley and Sons, Inc., 1996.
[23] Roskam J. Methods for estimating stability and control derivatives of conventional subsonic airplanes[P]. Lawrence, Kansas, USA: The University of Kansas, 1971.
[24] Utkin V I. Sliding modes in control and optimization [M]. Berlin, Germany: Springer-Verlag, 1992. DOI:10.1007/ 978-3-642-84379-2.
[25] Aghababa M P, Akbari M E. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J]. Applied Mathematics and Computation, 2012, 218(9): 5757-5768. DOI:10.1016/j.amc.2011.11.080.
[26] Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design[J]. Automatica, 1996, 32(3): 423-427. DOI:10.1016/0005-1098(95)00147-6.
[27] Ioannou P A, Sun J. Robust adaptive control [M]. New Jersey, NJ, USA: Prentice-Hall, 1996. DOI:10.1007/978-1-4471-5102-9-118-1.