|Table of Contents|

[1] Ni Peizhou, Li Xu, Xia Liang, Huang Liang, et al. Modeling the special intersections for enhanced digital map [J]. Journal of Southeast University (English Edition), 2020, 36 (3): 264-272. [doi:10.3969/j.issn.1003-7985.2020.03.003]
Copy

Modeling the special intersections for enhanced digital map()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 03
Page:
264-272
Research Field:
Traffic and Transportation Engineering
Publishing date:
2020-09-20

Info

Title:
Modeling the special intersections for enhanced digital map
Author(s):
Ni Peizhou1 Li Xu1 Xia Liang1 Huang Liang2 3
1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2NavInfo Co., Ltd, Beijing 100083, China
3China Satellite Navigation Communication Co., Ltd, Beijing 100094, China
Keywords:
enhanced digital map lane-level intersection model cardinal spline
PACS:
U495
DOI:
10.3969/j.issn.1003-7985.2020.03.003
Abstract:
A new lane-level road modeling method based on cardinal spline is proposed for the special intersections which are covered by vegetation or artificial landscape in their central regions. First, cardinal spline curves are used to fit the virtual lanes inside special intersections, and an initial road model is established using a series of control points and tension parameters. Then, the progressive optimization algorithm is proposed to determine the final road model based on the initial model. The algorithm determines reasonable control points and optimal tension parameters according to the degree of road curvature changes, so as to achieve a balance between the efficiency and reliability of the road model. Finally, the proposed intersection model is verified and evaluated through experiments. The results show that this method can effectively describe the lane-level topological relationship and geometric details of this kind of special intersection where the central area is covered by vegetation or artificial landscape, and can achieve a good balance between the efficiency and reliability of the road model.

References:

[1] Jo K, Sunwoo M. Generation of a precise roadway map for autonomous cars[J].IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 925-937. DOI:10.1109/TITS.2013.2291395.
[2] Ress C, Etemad A, Kuck D, et al. Electronic horizon-providing digital map data for ADAS applications[C]//2nd International Workshop on Intelligent Vehicle Control Systems. Funchal-Madeira, Portugal, 2008: 40-49.
[3] Kim S W, Liu W, Ang M H, et al. The impact of cooperative perception on decision making and planning of autonomous vehicles[J].IEEE Intelligent Transportation Systems Magazine, 2015, 7(3): 39-50. DOI:10.1109/MITS.2015.2409883.
[4] Gwon G P, Hur W S, Kim S W, et al. Generation of a precise and efficient lane-level road map for intelligent vehicle systems[J].IEEE Transactions on Vehicular Technology, 2017, 66(6): 4517-4533. DOI:10.1109/tvt.2016.2535210.
[5] Durekovic S, Smith N. Architectures of map-supported ADAS[C]//2011 IEEE Intelligent Vehicles Symposium. Baden-Baden, Germany, 2011: 207-211. DOI:10.1109/IVS.2011.5940402.
[6] Du J, Barth M J. Next-generation automated vehicle location systems: Positioning at the lane level[J].IEEE Transactions on Intelligent Transportation Systems, 2008, 9(1): 48-57. DOI:10.1109/TITS.2007.908141.
[7] Ziegler J, Bender P, Schreiber M, et al. Making bertha drive: An autonomous journey on a historic route[J].IEEE Intelligent Transportation Systems Magazine, 2014, 6(2): 8-20. DOI:10.1109/MITS.2014.2306552.
[8] Betaille D, Toledo-Moreo R. Creating enhanced maps for lane-level vehicle navigation[J].IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 786-798. DOI:10.1109/tits.2010.2050689.
[9] Naumann M, Hellmund A M. Multi-drive road map generation on standardized high-velocity roads using low-cost sensor data[C]//19th International IEEE Conference on Intelligent Transportation Systems(ITSC 2016). Rio de Janeiro, Brazil, 2016: 113-120. DOI:10.1109/ITSC.2016.7795540.
[10] Zhang T, Yang D G, Li T, et al. An improved virtual intersection model for vehicle navigation at intersections[J].Transportation Research Part C: Emerging Technologies, 2011, 19(3): 413-423. DOI:10.1016/j.trc.2010.06.001.
[11] Zhang T, Arrigoni S, Garozzo M, et al. A lane-level road network model with global continuity[J].Transportation Research Part C: Emerging Technologies, 2016, 71(10): 32-50. DOI:10.1016/j.trc.2016.07.003.
[12] Chen A N, Ramanandan A, Farrell J A. High-precision lane-level road map building for vehicle navigation[C]//IEEE/ION Position, Location and Navigation Symposium. Indian Wells, CA, USA, 2010: 1035-1042. DOI:10.1109/PLANS.2010.5507331.
[13] Gikas V, Stratakos J. A novel geodetic engineering method for accurate and automated road/railway centerline geometry extraction based on the bearing diagram and fractal behavior[J].IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 115-126. DOI:10.1109/TITS.2011.2163186.
[14] Brummer S, Janda F, Maier G, et al. Evaluation of a mapping strategy based on smooth arc splines for different road types[C]//16th International IEEE Conference on Intelligent Transportation Systems(ITSC 2013). Hague, The Netherlands, 2013: 160-165. DOI:10.1109/ITSC.2013.6728227.
[15] Schindler A, Maier G, Janda F. Generation of high precision digital maps using circular arc splines[C]// 2012 IEEE Intelligent Vehicles Symposium. Madrid, Spain, 2012: 246-251. DOI:10.1109/IVS.2012.6232124.
[16] Ben-Arieh D, Chang S, Rys M, et al. Geometric modeling of highways using global positioning system data and B-spline approximation[J].Journal of Transportation Engineering, 2004, 130(5): 632-636. DOI:10.1061/(asce)0733-947x(2004)130:5(632).
[17] Schindler A, Maier G, Pangerl S. Exploiting arc splines for digital maps[C]// 14th International IEEE Conference on Intelligent Transportation Systems(ITSC 2011). Washington, DC, USA, 2011: 1-6. DOI:10.1109/ITSC.2011.6082800.
[18] Wedel A, Badino H, Rabe C, et al. B-spline modeling of road surfaces with an application to free-space estimation[J].IEEE Transactions on Intelligent Transportation Systems, 2009, 10(4): 572-583. DOI:10.1109/TITS.2009.2027223.
[19] Loose H, Franke U. B-spline-based road model for 3d lane recognition[C]//13th International IEEE Conference on Intelligent Transportation Systems(ITSC 2010). Funchal, Madeira, Portugal, 2010: 91-98. DOI:10.1109/ITSC.2010.5624968.
[20] Zhao K, Meuter M, Nunn C, et al. A novel multi-lane detection and tracking system[C]// 2012 IEEE Intelligent Vehicles Symposium. Madrid, Spain, 2012: 1084-1089.
[21] Bodduna K, Siddavatam R. A novel algorithm for detection and removal of random valued impulse noise using cardinal splines[C]//2012 Annual IEEE India Conference(INDICON). Kochi, India, 2012: 1003-1008. DOI:10.1109/INDCON.2012.6420763.

Memo

Memo:
Biographies: Ni Peizhou(1994—), male, graduate; Li Xu(corresponding author), male, doctor, professor, lixu.mail@163.com.
Foundation items: The National Natural Science Foundation of China(No. 61973079, 61273236), the Program for Special Talents in Six Major Fields of Jiangsu Province(No.2017JXQC-003).
Citation: Ni Peizhou, Li Xu, Xia Liang, et al. Modeling the special intersections for enhanced digital map[J].Journal of Southeast University(English Edition), 2020, 36(3):264-272.DOI:10.3969/j.issn.1003-7985.2020.03.003.
Last Update: 2020-09-20