|Table of Contents|

[1] Tan Qiyan, Kan Yajing, Zhao Gutian, et al. Effects of ion-ion correlations on surface charge inversion inmixture electrolyte solutions [J]. Journal of Southeast University (English Edition), 2020, 36 (3): 285-291. [doi:10.3969/j.issn.1003-7985.2020.03.006]
Copy

Effects of ion-ion correlations on surface charge inversion inmixture electrolyte solutions()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 03
Page:
285-291
Research Field:
Chemistry and Chemical Engineering
Publishing date:
2020-09-20

Info

Title:
Effects of ion-ion correlations on surface charge inversion inmixture electrolyte solutions
Author(s):
Tan Qiyan1 2 Kan Yajing1 Zhao Gutian1 Chen Yunfei1
1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2 School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, China
Keywords:
ion-ion correlations charge inversion mixture electrolyte solutions surface forces apparatus
PACS:
O647.1
DOI:
10.3969/j.issn.1003-7985.2020.03.006
Abstract:
As the structure of electrical double layer(EDL)is crucial for the transport properties of ions in micro/nanochannels, to demonstrate the effects of the ion-ion correlations on EDL structures in mixture electrolyte solutions, the interaction forces between two mica surfaces immersed in different volume fractions of LaCl3/KCl and LaCl3/MgCl2 mixture solutions with a total ionic strength of 10-4 mol/L were measured using a surface forces apparatus(SFA). The results reveal that the surface charge of mica surfaces can be inversed at a critical concentration of La3+ ions in electrolyte solutions, due to the correlations between La3+ ions. The addition of monovalent has negligible effects on ion-ion correlations, while the charge inversion was slightly suppressed by introducing the divalent ions. The mechanism of charge inversion in mixture electrolyte solutions was analyzed based on the strongly correlated liquid(SCL)theory. These findings provide implications for understanding the effects of ion-ion correlations on EDL structures, surface charge properties, and ion transportation.

References:

[1] Luo Z X, Xing Y Z, Ling Y C, et al. Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR[J]. Nature Communications, 2015, 6: 6358. DOI:10.1038/ncomms7358.
[2] Sparreboom W, van den Berg A, Eijkel J C T. Principles and applications of nanofluidic transport[J]. Nature Nanotechnology, 2009, 4(11): 713-720. DOI:10.1038/nnano.2009.332.
[3] Lin K B, Lin C, Polster J W, et al. Charge inversion and calcium gating in mixtures of ions in nanopores[J]. Journal of the American Chemical Society, 2020, 142(6): 2925-2934. DOI:10.1021/jacs.9b11537.
[4] Yu Grosberg A, Nguyen T T, Shklovskii B. Colloquium: The physics of charge inversion in chemical and biological systems[J]. Reviews of Modern Physics, 2002, 74(2): 329-345. DOI:10.1103/RevModPhys.74.329.
[5] Chou K H, McCallum C, Gillespie D, et al. An experimental approach to systematically probe charge inversion in nanofluidic channels[J]. Nano Letters, 2018, 18(2): 1191-1195. DOI:10.1021/acs.nanolett.7b04736.
[6] Loessberg-Zahl J, Janssen K G H, McCallum C, et al.(Almost)stationary isotachophoretic concentration boundary in a nanofluidic channel using charge inversion[J]. Analytical Chemistry, 2016, 88(12): 6145-6150. DOI:10.1021/acs.analchem.6b01701.
[7] Li S X, Guan W H, Weiner B, et al. Direct observation of charge inversion in divalent nanofluidic devices[J]. Nano Letters, 2015, 15(8): 5046-5051. DOI:10.1021/acs.nanolett.5b01115.
[8] Fahad H M, Gupta N, Han R, et al. Highly sensitive bulk silicon chemical sensors with sub-5 nm thin charge inversion layers[J]. ACS Nano, 2018, 12(3): 2948-2954. DOI:10.1021/acsnano.8b00580.
[9] Qiao R, Aluru N R. Charge inversion and flow reversal in a nanochannel electro-osmotic flow[J]. Physical Review Letters, 2004, 92(19): 198301. DOI:10.1103/PhysRevLett.92.198301.
[10] van der Heyden F H J, Stein D, Besteman K, et al. Charge inversion at high ionic strength studied by streaming currents[J]. Physical Review Letters, 2006, 96(22): 224502. DOI:10.1103/PhysRevLett.96.224502.
[11] He Y, Gillespie D, Boda D, et al. Tuning transport properties of nanofluidic devices with local charge inversion[J]. Journal of the American Chemical Society, 2009, 131(14): 5194-5202. DOI:10.1021/ja808717u.
[12] Besteman K, van Eijk K, Lemay S G. Charge inversion accompanies DNA condensation by multivalent ions[J]. Nature Physics, 2007, 3(9): 641-644. DOI:10.1038/nphys697.
[13] Favaro M, Jeong B, Ross P N, et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface[J]. Nature Communications, 2016, 7: 12695. DOI:10.1038/ncomms12695.
[14] Besteman K, Zevenbergen M A G, Lemay S G. Charge inversion by multivalent ions: Dependence on dielectric constant and surface-charge density[J]. Physical Review E, 2005, 72(6): 061501. DOI:10.1103/PhysRevE.72.061501.
[15] Tan Q Y, Zhao G T, Qiu Y H, et al. Experimental observation of the ion-ion correlation effects on charge inversion and strong adhesion between mica surfaces in aqueous electrolyte solutions[J]. Langmuir, 2014, 30(36): 10845-10854. DOI:10.1021/la5024357.
[16] Wang Z Y, Wu J Z. Ion association at discretely-charged dielectric interfaces: Giant charge inversion[J]. Journal of Chemical Physics, 2017, 147(2): 024703. DOI:10.1063/1.4986792.
[17] Luan B Q, Chen K L, Zhou R H. Mechanism of divalent-ion-induced charge inversion of bacterial membranes[J]. Journal of Physical Chemistry Letters, 2016, 7(13): 2434-2438. DOI:10.1021/acs.jpclett.6b01065.
[18] Qiu Y H, Ma J, Chen Y F. Ionic behavior in highly concentrated aqueous solutions nanoconfined between discretely charged silicon surfaces[J]. Langmuir, 2016, 32(19): 4806-4814. DOI:10.1021/acs.langmuir.6b01149.
[19] Rouzina I, Bloomfield V A. Macroion attraction due to electrostatic correlation between screening counterions. 1. Mobile surface-adsorbed ions and diffuse ion cloud[J]. The Journal of Physical Chemistry, 1996, 100(23): 9977-9989. DOI:10.1021/jp960458g.
[20] Martín-Molina A, Rodríguez-Beas C, Faraudo J. Charge reversal in anionic liposomes: Experimental demonstration and molecular origin[J]. Physical Review Letters, 2010, 104(16): 168103. DOI:10.1103/PhysRevLett.104.168103.
[21] Sugimoto T, Nishiya M, Kobayashi M. Charge reversal of sulfate latex particles in the presence of lanthanum ion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572: 18-26. DOI:10.1016/j.colsurfa.2019.03.077.
[22] Tivony R, Yaakov D B, Silbert G, et al. Direct observation of confinement-induced charge inversion at a metal surface[J]. Langmuir, 2015, 31(47): 12845-12849. DOI:10.1021/acs.langmuir.5b03326.
[23] Miller M, Chu M Q, Lin B H, et al. Observation of ordered structures in counterion layers near wet charged surfaces: A potential mechanism for charge inversion[J]. Langmuir, 2016, 32(1): 73-77. DOI:10.1021/acs.langmuir.5b04058.
[24] Martin-Molina A, Calero C, Faraudo J, et al. The hydrophobic effect as a driving force for charge inversion in colloids[J]. Soft Matter, 2009, 5(7): 1350-1353. DOI:10.1039/B820489F.
[25] Wang Z Y, Zhang P L, Ma Z W. On the physics of both surface overcharging and charge reversal at heterophase interfaces[J]. Physical Chemistry Chemical Physics, 2018, 20(6): 4118-4128. DOI:10.1039/C7CP08117K.
[26] Levin Y. Electrostaticcorrelations: From plasma to biology[J]. Reports on Progress in Physics, 2002, 65(11): 1577-1632. DOI:10.1088/0034-4885/65/11/201.
[27] Deng M G, Karniadakis G E. Electrostatic correlations near charged planar surfaces[J]. The Journal of Chemical Physics, 2014, 141(9): 094703. DOI:10.1063/1.4894053.
[28] Laanait N, Mihaylov M, Hou B, et al. Tuning ion correlations at an electrified soft interface[J]. PNAS, 2012, 109(50): 20326-20331. DOI:10.1073/pnas.1214204109.
[29] Wang Z Y, Ma Z W, Ma Y Q. Suppression and promotion of charge inversion in the presence of multivalent coions[J]. Physical Review E—Statistical, Nonlinear and Soft Matter Physics, 2015, 92(6): 060303. DOI:10.1103/PhysRevE.92.060303.
[30] Israelachvili J N. Intermolecular and surface forces[M]. New York: Elsevier Science, 2011:293-335.

Memo

Memo:
Biography: Tan Qiyan(1981—), male, doctor, lecturer, tanqiyan@njit.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51605090), the Natural Science Foundation of Jiangsu Province(No.BK20160776, BK20160670), Research Foundation of Nanjing Institute of Technology(No.YKJ201502).
Citation: Tan Qiyan, Kan Yajing, Zhao Gutian, et al.Effects of ion-ion correlations on surface charge inversion in mixture electrolyte solutions[J].Journal of Southeast University(English Edition), 2020, 36(3):285-291.DOI:10.3969/j.issn.1003-7985.2020.03.006.
Last Update: 2020-09-20