[1] Tuli A, Hopmans J W, Rolston D E, et al. Comparison of air and water permeability between disturbed and undisturbed soils[J].Soil Science Society of America Journal, 2005, 69(5): 1361-1371. DOI:10.2136/sssaj2004.0332.
[2] Childs E C, Collis-George N. The permeability of porousmaterials[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 201(1066): 392-405.DOI:10.1098/rspa.1950.0068.
[3] Marshall T J. A relation between permeability and sizedistribution of pores[J].Journal of Soil Science, 1958, 9(1):1-8.DOI:10.1111/j.1365-2389.1958.tb01892.x.
[4] Kunze R J, Uehara G, Graham K. Factors important in the calculation of hydraulic conductivity[J].Soil Science Society of America Journal, 1968, 32(6): 760-765. DOI:10.2136/sssaj1968.03615995003200060020x.
[5] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.DOI:10.1029/WR012i003p00513.
[6] Fredlund D G, Xing A Q, Huang S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 533-546. DOI:10.1139/t94-062.
[7] Zhai Q, Rahardjo H. Estimation of permeability functionfrom the soil-water characteristic curve[J].EngineeringGeology, 2015, 199: 148-156. DOI:10.1016/j.enggeo.2015.11.001.
[8] Zhai Q, Rahardjo H, Satyanaga A. A pore-size distribution function based method for estimation of hydraulic properties of sandy soils[J]. Engineering Geology, 2018, 246: 288-292.DOI:10.1016/j.enggeo.2018.09.031.
[9] Zhai Q, Rahardjo H, Satyanaga A, et al. Role of the pore-size distribution function on water flow in unsaturated soil[J]. Journal of Zhejiang University-SCIENCE A, 2019, 20(1): 10-20. DOI:10.1631/jzus.A1800347.
[10] Zhai Q, Rahardjo H, Satyanaga A. Estimation of air permeability function from soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2019, 56(4): 505-513. DOI:10.1139/cgj-2017-0579.
[11] Vanapalli S K, Fredlund D G, Pufahl D, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392. DOI:10.1139/t96-060.
[12] Zhai Q, Rahardjo H, Satyanaga A, et al. Estimation of unsaturated shear strength from soil-water characteristic curve[J]. Acta Geotechnica, 2019, 14(6): 1977-1990. DOI:10.1007/s11440-019-00785-y.
[13] Zhai Q, Rahardjo H, Satyanaga A, et al. Effect of the uncertainty in soil-water characteristic curve on the estimated shear strength of unsaturated soil[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(4): 317-330. DOI:10.1631/jzus.a1900589.
[14] Zhai Q, Rahardjo H, Satyanaga A, et al. Estimation of tensile strength of sandy soil from soil-water characteristic curve[J]. Acta Geotechnica, 2020: 1-11. DOI:10.1007/s11440-020-01013-8.
[15] Fredlund D G, Xing A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. DOI:10.1139/t94-061.
[16] Zhai Q, Rahardjo H, Satyanaga A, et al. Framework to estimate the soil-water characteristic curve for soils with different void ratios[J]. Bulletin of Engineering Geology and the Environment[J/OL](2020-05-08)[2020-08-20].https://link.springer.com/content/pdf/10.1007/s10064-020-01825-8.pdf.
[17] Childs E C. The use of soil moisture characteristics in soil studies[J]. Soil Science, 1940, 50(4): 239-252. DOI:10.1097/00010694-194010000-00001.
[18] Childs E C. Stability of clay soils[J]. Soil Science, 1942, 53(2): 79-92. DOI:10.1097/00010694-194202000-00001.
[19] Diamond S. Pore size distributions in clays[J]. Clays and Clay Minerals, 1970, 18(1): 7-23. DOI:10.1346/ccmn.1970.0180103.
[20] Spaans E J A, Baker J M. The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic[J]. Soil Science Society of America Journal, 1996, 60(1): 13-19. DOI:10.2136/sssaj1996.03615995006000010005x.
[21] Koopmans R W R, Miller R D. Soil freezing and soil water characteristic curves[J]. Soil Science Society of America Journal, 1966, 30(6): 680-685. DOI:10.2136/sssaj1966.03615995003000060011x.
[22] Azmatch T F, Sego D C, Arenson L U, et al. Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils[J]. Cold Regions Science and Technology, 2012, 83/3: 103-109. DOI:10.1016/j.coldregions.2012.07.002.
[23] Ren J P, Vanapalli S K. Comparison of soil-freezing and soil-water characteristic curves of two Canadian soils[J]. Vadose Zone Journal, 2019, 18(1): 1-14. DOI:10.2136/vzj2018.10.0185.
[24] Brooks R H, Corey A T. Hydraulic properties of porous media[J]. American Society of Agricultural Engineers, 1964, 7: 26-28. DOI:10.1016/j.trc.2012.10.009.
[25] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. DOI:10.2136/sssaj1980.03615995004400050002x.
[26] Satyanaga A, Rahardjo H, Leong E C, et al. Water characteristic curve of soil with bimodal grain-size distribution[J]. Computers and Geotechnics, 2013, 48: 51-61. DOI:10.1016/j.compgeo.2012.09.008.
[27] Fredlund M D, Wilson G W, Fredlund D G. Representation and estimation of the shrinkage curve[C]//Proceedings of the 3rd Internationl Conference on Unsaturated Soils. Recife, Brazil, 2002: 145-149.
[28] Zhai Q, Rahardjo H, Satyanaga A. Effect of bimodal soil-water characteristic curve on the estimation of permeability function[J]. Engineering Geology, 2017, 230: 142-151. DOI:10.1016/j.enggeo.2017.09.025.
[29] Li Z S, Benchouk A, Derfouf F E M, et al. Global representation of the drying-wetting curves of four engineering soils: Experiments and correlations[J]. Acta Geotechnica, 2018, 13(1): 51-71. DOI:10.1007/s11440-017-0527-3.
[30] Goebel M, Bachmann J, Woche S K, et al. Water potential and aggregate size effects on contact angle and surface energy[J]. Soil Science Society of America Journal, 2004, 68(2): 383-393. DOI:10.2136/sssaj2004.3830.
[31] Woche S K, Goebel M O, Kirkham M B, et al. Contact angle of soils as affected by depth, texture, and land management[J]. European Journal of Soil Science, 2005, 56(2): 239-251. DOI:10.1111/j.1365-2389.2004.00664.x.
[32] Ramírez-Flores J C, Woche S K, Bachmann J, et al. Comparing capillary rise contact angles of soil aggregates and homogenized soil[J]. Geoderma, 2008, 146(1/2): 336-343. DOI:10.1016/j.geoderma.2008.05.032.
[33] Ganz C, Bachmann J, Lamparter A, et al. Specific processes during in situ infiltration into a sandy soil with low-level water repellency[J]. Journal of Hydrology, 2013, 484: 45-54. DOI:10.1016/j.jhydrol.2013.01.009.
[34] Cai G Q, Zhou A N, Sheng D C. Permeability function for unsaturated soils with different initial densities[J]. Canadian Geotechnical Journal, 2014, 51(12): 1456-1467. DOI:10.1139/cgj-2013-0410.
[35] Dieudonné A, Della Vecchia G, Charlier R, et al. Influence of microfabric evolution on the retention behaviour of compacted clayey soils[M]//Unsaturated Soils: Research & Applications. CRC Press, 2014: 679-684. DOI:10.1201/b17034-95.
[36] Gao Y, Sun D A. Soil-water retention behavior of compacted soil with different densities over a wide suction range and its prediction[J]. Computers and Geotechnics, 2017, 91: 17-26. DOI:10.1016/j.compgeo.2017.06.016.