|Table of Contents|

[1] Guo Jingni, Xu Junxiang, He Zhenggang, Liao Wei, et al. Linking strategies to optimize the robustnessof multimodal transport network [J]. Journal of Southeast University (English Edition), 2020, 36 (3): 349-356. [doi:10.3969/j.issn.1003-7985.2020.03.014]
Copy

Linking strategies to optimize the robustnessof multimodal transport network()
基于鲁棒性优化的多式联运网络链路策略
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 03
Page:
349-356
Research Field:
Traffic and Transportation Engineering
Publishing date:
2020-09-20

Info

Title:
Linking strategies to optimize the robustnessof multimodal transport network
基于鲁棒性优化的多式联运网络链路策略
Author(s):
Guo Jingni1, Xu Junxiang1, He Zhenggang1, Liao Wei2
1School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China
2School of Logistics, Chengdu University of Information Technology, Chengdu 610225, China
郭静妮1, 徐君翔1, 贺政纲1, 廖伟2
1西南交通大学交通运输与物流学院, 成都 611756; 2成都信息工程大学物流学院, 成都 610225
Keywords:
linking strategy multimodal transport network robustness cascading failure optimization
链路策略 多式联运网络 鲁棒性 级联失效 优化
PACS:
U491
DOI:
10.3969/j.issn.1003-7985.2020.03.014
Abstract:
In view of the problem that the multimodal transport network is vulnerable to attack and faces the risk of cascading failure, three low polarization linking strategies considering the characteristics of the multimodal transport network are proposed to optimize network robustness. They are the low polarization linking strategy based on the degree of nodes(D_LPLS), low polarization linking strategy based on the betweenness of nodes(B_LPLS), and low polarization linking strategy based on the closeness of nodes(C_LPLS). The multimodal transport network in the Sichuan-Tibet region is analyzed, and the optimization effects of these three strategies are compared with the random linking strategy under random attacks and intentional attacks. The results show that C_LPLS can effectively optimize the robustness of the network. Under random attacks, the advantages of C_LPLS are obvious when the ratio of increased links is less than 15%, but it has fewer advantages compared with B_LPLS when the ratio of increased links is 15% to 30%. Under intentional attacks, as the ratio of increased links goes up, the advantages of C_LPLS become more obvious. Therefore, the increase of links by C_LPLS is conducive to the risk control of the network, which can provide theoretical support for the optimization of future multimodal transport network structures.
针对多式联运网络易受到攻击而面临级联失效风险的问题, 提出了3种考虑多式联运特性的低极化链路策略以优化网络鲁棒性:基于节点度的低极化链路策略(D_LPLS)、基于节点介数的低极化链路策略(B_LPLS)、基于节点贴近度的低极化链路策略(C_LPLS).在川藏地区的多式联运网络中进行了实证分析, 分别在随机攻击与蓄意攻击模式下将3种策略的优化效果与随机链路策略进行对比.结果表明, C_LPLS能够有效地优化网络的鲁棒性.在随机攻击模式下, C_LPLS在链路增加比例为15%以下时优势明显, 在链路增加比例为15%~30%时与B_LPLS相比具有微弱的优势;在蓄意攻击模式下, 随着链路增加比例的上升, C_LPLS的优势则越来越明显.因此对于多式联运网络, 采用C_LPLS增加链路有利于网络的风险控制, 能够为未来多式联运网络结构的优化提供理论支撑.

References:

[1] Xia Y X, Liu N J, Iu H H C. Oscillation and chaos in a deterministic traffic network[J].Chaos, Solitons & Fractals, 2009, 42(3): 1700-1704. DOI:10.1016/j.chaos.2009.03.097.
[2] Wang J W. Modeling cascading failures in complex networks based on radiate circle[J].Physica A: Statistical Mechanics and Its Applications, 2012, 391(15): 4004-4011. DOI:10.1016/j.physa.2012.02.006.
[3] Li S D, Li L X, Yang Y X, et al. Revealing the process of edge-based-attack cascading failures[J].Nonlinear Dynamics, 2012, 69(3): 837-845. DOI:10.1007/s11071-011-0308-8.
[4] Zhang Y P, Fang B P, Deng X C, et al. An improved target immunization strategy[C]//2010 International Conference on Digital Manufacturing & Automation. Changsha, China, 2010:206-209. DOI: 10.1109/ICDMA.2010.168.
[5] Lazaros K G, Fredrik L, Panos A, et al. Improving immunization strategies[J]. Physical Review E, 2007, 75(4 Pt 2): 045104. DOI: 10.1103/PhysRevE.75.045104.
[6] Yuan J Z, Zhao D Y, Long K P, et al. Improved immunization strategy to reduce energy consumption on nodes traffic[J].Optics Communications, 2017, 389: 314-317. DOI:10.1016/j.optcom.2016.12.045.
[7] Xia L L, Song Y R, Li C C, et al. Improved targeted immunization strategies based on two rounds of selection[J].Physica A: Statistical Mechanics and Its Applications, 2018, 496: 540-547. DOI:10.1016/j.physa.2017.12.017.
[8] Huang W, Chow T W S. Effective strategy of adding nodes and links for maximizing the traffic capacity of scale-free network[J].Chaos(Woodbury, N.Y.), 2010, 20(3): 033123. DOI:10.1063/1.3490745.
[9] Gross T, D’Lima C J D, Blasius B. Epidemic dynamics on an adaptive network[J].Physical Review Letters, 2006, 96(20): 208701. DOI:10.1103/PhysRevLett.96.208701.
[10] Dangerfield C E, Ross J V, Keeling M J. Integrating stochasticity and network structure into an epidemic model[J].Journal of the Royal Society, Interface, 2009, 6(38): 761-774. DOI:10.1098/rsif.2008.0410.
[11] Liu D C, Ji X P, Wang B, et al. Analysis and countermeasures of topology vulnerability of power communication network based on complex network theory[J]. Power System Technology, 2015, 39(12):3615-3621. DOI:10.13335/j.1000-3673.pst.2015.12.042. (in Chinese)
[12] Zhang Y, Xiao X Y, Li C S. Vulnerability analysis and improvement strategy of power-information coupling network considering information physical interaction[J]. Power System Technology, 2018, 42(10):3136-3147. DOI:10.13335/j.1000-3673.pst.2017.2602. (in Chinese)
[13] Jiang Z Y, Liang M G, An W J. Effects of efficient edge rewiring strategies on network transport efficiency[J].Physica A: Statistical Mechanics and Its Applications, 2014, 394: 379-385. DOI:10.1016/j.physa.2013.09.069.
[14] Jiang Z Y, Liang M G, Guo D C. Enhancing network performance by edge addition[J].International Journal of Modern Physics C, 2011, 22(11): 1211-1226. DOI:10.1142/s0129183111016841.
[15] Cao X B, Hong C, Du W B, et al. Improving the network robustness against cascading failures by adding links[J].Chaos Solitons & Fractals, 2013, 57: 35-40. DOI:10.1016/j.chaos.2013.08.007.
[16] Chen S M, Pang S P, Zou X Q. An LCOR model for suppressing cascading failure in weighted complex networks[J].Chinese Physics B, 2013, 22(5): 058901. DOI:10.1088/1674-1056/22/5/058901.
[17] Hu Y Q, Ksherim B, Cohen R, et al. Percolation in interdependent and interconnected networks: Abrupt change from second- to first-order transitions[J].Physical Review E, 2011, 84(6 Pt 2): 066116. DOI:10.1103/PhysRevE.84.066116.
[18] Parshani R, Buldyrev S V, Havlin S. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition[J].Physical Review Letters, 2010, 105(4): 048701. DOI:10.1103/PhysRevLett.105.048701.
[19] Zhang T Q, Zhang Y, Zhu X Z, et al. Cascading failures on interdependent networks with star dependent links[J].Physica A: Statistical Mechanics and its Applications, 2019, 535: 122222. DOI:10.1016/j.physa.2019.122222.
[20] Chen S M, Pang S P, Zou X Q, et al. Robustness optimization of load-capacity nonlinear model in weighted network for cascading failure[J].Control and Decision, 2013, 28(7): 1041-1045.(in Chinese)
[21] Jiang Z Y, Ma J F, Shen Y L, et al. Effects of link-orientation methods on robustness against cascading failures in complex networks[J].Physica A: Statistical Mechanics and its Applications, 2016, 457: 1-7. DOI:10.1016/j.physa.2016.03.107.
[22] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J].Physical Review E, 2002, 66(6 Pt 2): 065102. DOI:10.1103/PhysRevE.66.065102.
[23] Guimerá R, Díaz-Guilera A, Vega-Redondo F, et al. Optimal network topologies for local search with congestion[J].Physical Review Letters, 2002, 89(24): 248701. DOI:10.1103/PhysRevLett.89.248701.
[24] Freeman L C. A set of measures of centrality based on betweenness[J].Sociometry, 1977, 40(1): 35-41. DOI:10.2307/3033543.
[25] Freeman L C. Centrality in social networks conceptual clarification[J].Social Networks, 1978, 1(3): 215-239. DOI:10.1016/0378-8733(78)90021-7.

Memo

Memo:
Biographies: Guo Jingni(1994—), female, Ph.D. candidate; Liao Wei(corresponding author), female, doctor, associate professor, 2143573349@qq.com.
Foundation item: The National Key Research and Development Program of China(No.2018YFB1601400).
Citation: Guo Jingni, Xu Junxiang, He Zhenggang, et al. Linking strategies to optimize the robustness of multimodal transport network[J].Journal of Southeast University(English Edition), 2020, 36(3):349-356.DOI:10.3969/j.issn.1003-7985.2020.03.014.
Last Update: 2020-06-20