|Table of Contents|

[1] Guo Jingni, Xu Junxiang, He Zhenggang, Liao Wei, et al. Linking strategies to optimize the robustnessof multimodal transport network [J]. Journal of Southeast University (English Edition), 2020, 36 (3): 349-356. [doi:10.3969/j.issn.1003-7985.2020.03.014]
Copy

Linking strategies to optimize the robustnessof multimodal transport network()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 03
Page:
349-356
Research Field:
Traffic and Transportation Engineering
Publishing date:
2020-09-20

Info

Title:
Linking strategies to optimize the robustnessof multimodal transport network
Author(s):
Guo Jingni1 Xu Junxiang1 He Zhenggang1 Liao Wei2
1School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China
2School of Logistics, Chengdu University of Information Technology, Chengdu 610225, China
Keywords:
linking strategy multimodal transport network robustness cascading failure optimization
PACS:
U491
DOI:
10.3969/j.issn.1003-7985.2020.03.014
Abstract:
In view of the problem that the multimodal transport network is vulnerable to attack and faces the risk of cascading failure, three low polarization linking strategies considering the characteristics of the multimodal transport network are proposed to optimize network robustness. They are the low polarization linking strategy based on the degree of nodes(D_LPLS), low polarization linking strategy based on the betweenness of nodes(B_LPLS), and low polarization linking strategy based on the closeness of nodes(C_LPLS). The multimodal transport network in the Sichuan-Tibet region is analyzed, and the optimization effects of these three strategies are compared with the random linking strategy under random attacks and intentional attacks. The results show that C_LPLS can effectively optimize the robustness of the network. Under random attacks, the advantages of C_LPLS are obvious when the ratio of increased links is less than 15%, but it has fewer advantages compared with B_LPLS when the ratio of increased links is 15% to 30%. Under intentional attacks, as the ratio of increased links goes up, the advantages of C_LPLS become more obvious. Therefore, the increase of links by C_LPLS is conducive to the risk control of the network, which can provide theoretical support for the optimization of future multimodal transport network structures.

References:

[1] Xia Y X, Liu N J, Iu H H C. Oscillation and chaos in a deterministic traffic network[J].Chaos, Solitons & Fractals, 2009, 42(3): 1700-1704. DOI:10.1016/j.chaos.2009.03.097.
[2] Wang J W. Modeling cascading failures in complex networks based on radiate circle[J].Physica A: Statistical Mechanics and Its Applications, 2012, 391(15): 4004-4011. DOI:10.1016/j.physa.2012.02.006.
[3] Li S D, Li L X, Yang Y X, et al. Revealing the process of edge-based-attack cascading failures[J].Nonlinear Dynamics, 2012, 69(3): 837-845. DOI:10.1007/s11071-011-0308-8.
[4] Zhang Y P, Fang B P, Deng X C, et al. An improved target immunization strategy[C]//2010 International Conference on Digital Manufacturing & Automation. Changsha, China, 2010:206-209. DOI: 10.1109/ICDMA.2010.168.
[5] Lazaros K G, Fredrik L, Panos A, et al. Improving immunization strategies[J]. Physical Review E, 2007, 75(4 Pt 2): 045104. DOI: 10.1103/PhysRevE.75.045104.
[6] Yuan J Z, Zhao D Y, Long K P, et al. Improved immunization strategy to reduce energy consumption on nodes traffic[J].Optics Communications, 2017, 389: 314-317. DOI:10.1016/j.optcom.2016.12.045.
[7] Xia L L, Song Y R, Li C C, et al. Improved targeted immunization strategies based on two rounds of selection[J].Physica A: Statistical Mechanics and Its Applications, 2018, 496: 540-547. DOI:10.1016/j.physa.2017.12.017.
[8] Huang W, Chow T W S. Effective strategy of adding nodes and links for maximizing the traffic capacity of scale-free network[J].Chaos(Woodbury, N.Y.), 2010, 20(3): 033123. DOI:10.1063/1.3490745.
[9] Gross T, D’Lima C J D, Blasius B. Epidemic dynamics on an adaptive network[J].Physical Review Letters, 2006, 96(20): 208701. DOI:10.1103/PhysRevLett.96.208701.
[10] Dangerfield C E, Ross J V, Keeling M J. Integrating stochasticity and network structure into an epidemic model[J].Journal of the Royal Society, Interface, 2009, 6(38): 761-774. DOI:10.1098/rsif.2008.0410.
[11] Liu D C, Ji X P, Wang B, et al. Analysis and countermeasures of topology vulnerability of power communication network based on complex network theory[J]. Power System Technology, 2015, 39(12):3615-3621. DOI:10.13335/j.1000-3673.pst.2015.12.042. (in Chinese)
[12] Zhang Y, Xiao X Y, Li C S. Vulnerability analysis and improvement strategy of power-information coupling network considering information physical interaction[J]. Power System Technology, 2018, 42(10):3136-3147. DOI:10.13335/j.1000-3673.pst.2017.2602. (in Chinese)
[13] Jiang Z Y, Liang M G, An W J. Effects of efficient edge rewiring strategies on network transport efficiency[J].Physica A: Statistical Mechanics and Its Applications, 2014, 394: 379-385. DOI:10.1016/j.physa.2013.09.069.
[14] Jiang Z Y, Liang M G, Guo D C. Enhancing network performance by edge addition[J].International Journal of Modern Physics C, 2011, 22(11): 1211-1226. DOI:10.1142/s0129183111016841.
[15] Cao X B, Hong C, Du W B, et al. Improving the network robustness against cascading failures by adding links[J].Chaos Solitons & Fractals, 2013, 57: 35-40. DOI:10.1016/j.chaos.2013.08.007.
[16] Chen S M, Pang S P, Zou X Q. An LCOR model for suppressing cascading failure in weighted complex networks[J].Chinese Physics B, 2013, 22(5): 058901. DOI:10.1088/1674-1056/22/5/058901.
[17] Hu Y Q, Ksherim B, Cohen R, et al. Percolation in interdependent and interconnected networks: Abrupt change from second- to first-order transitions[J].Physical Review E, 2011, 84(6 Pt 2): 066116. DOI:10.1103/PhysRevE.84.066116.
[18] Parshani R, Buldyrev S V, Havlin S. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition[J].Physical Review Letters, 2010, 105(4): 048701. DOI:10.1103/PhysRevLett.105.048701.
[19] Zhang T Q, Zhang Y, Zhu X Z, et al. Cascading failures on interdependent networks with star dependent links[J].Physica A: Statistical Mechanics and its Applications, 2019, 535: 122222. DOI:10.1016/j.physa.2019.122222.
[20] Chen S M, Pang S P, Zou X Q, et al. Robustness optimization of load-capacity nonlinear model in weighted network for cascading failure[J].Control and Decision, 2013, 28(7): 1041-1045.(in Chinese)
[21] Jiang Z Y, Ma J F, Shen Y L, et al. Effects of link-orientation methods on robustness against cascading failures in complex networks[J].Physica A: Statistical Mechanics and its Applications, 2016, 457: 1-7. DOI:10.1016/j.physa.2016.03.107.
[22] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J].Physical Review E, 2002, 66(6 Pt 2): 065102. DOI:10.1103/PhysRevE.66.065102.
[23] Guimerá R, Díaz-Guilera A, Vega-Redondo F, et al. Optimal network topologies for local search with congestion[J].Physical Review Letters, 2002, 89(24): 248701. DOI:10.1103/PhysRevLett.89.248701.
[24] Freeman L C. A set of measures of centrality based on betweenness[J].Sociometry, 1977, 40(1): 35-41. DOI:10.2307/3033543.
[25] Freeman L C. Centrality in social networks conceptual clarification[J].Social Networks, 1978, 1(3): 215-239. DOI:10.1016/0378-8733(78)90021-7.

Memo

Memo:
Biographies: Guo Jingni(1994—), female, Ph.D. candidate; Liao Wei(corresponding author), female, doctor, associate professor, 2143573349@qq.com.
Foundation item: The National Key Research and Development Program of China(No.2018YFB1601400).
Citation: Guo Jingni, Xu Junxiang, He Zhenggang, et al. Linking strategies to optimize the robustness of multimodal transport network[J].Journal of Southeast University(English Edition), 2020, 36(3):349-356.DOI:10.3969/j.issn.1003-7985.2020.03.014.
Last Update: 2020-06-20