[1] Zhao D, Liu S L, Gu D, et al. Improved multi-scale entropy and its application in rolling bearing fault feature extraction[J]. Measurement, 2020, 152:107361. DOI:10.1016/j.measurement.2019.107361.
[2] Cui L L, Wang X, Xu Y G, et al. A novel switching unscented Kalman filter method for remaining useful life prediction of rolling bearing [J]. Measurement, 2019, 135: 678-684. DOI:10.1016/j.measurement.2018.12.028.
[3] Glowacz A, Glowacz W, Glowacz Z, et al. Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals[J].Measurement, 2018, 113: 1-9. DOI:10.1016/j.measurement.2017.08.036.
[4] Su W S, Wang F T, Zhu H, et al. Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement[J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1458-1472. DOI:10.1016/j.ymssp.2009.11.011.
[5] Liu J, Xu Z D, Zhou L, et al. A statistical feature investigation of the spalling propagation assessment for a ball bearing[J]. Mechanism and Machine Theory, 2019, 131: 336-350. DOI:10.1016/j.mechmachtheory.2018.10.007.
[6] Chen B J, Shen B M, Chen F F, et al. Fault diagnosis method based on integration of RSSD and wavelet transform to rolling bearing[J]. Measurement, 2019, 131: 400-411. DOI:10.1016/j.measurement.2018.07.043.
[7] Ding P, Jia M P, Wang H. A dynamic structure-adaptive symbolic approach for slewing bearings’ life prediction under variable working conditions[J]. Structural Health Monitoring, 2020:147592172092993. DOI:10.1177/1475921720929939.
[8] Jiang R L, Chen J, Dong G M, et al. The weak fault diagnosis and condition monitoring of rolling element bearing using minimum entropy deconvolution and envelop spectrum[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227(5): 1116-1129. DOI:10.1177/0954406212457892.
[9] Sawalhi N, Randall R B. Signal pre-whitening using cepstrum editing(liftering)to enhance fault detection in rolling element bearings[C]// Proceedings of the 24 International Congress on Condition Monitoring and Diagnostic Engineering Management. Kolkata, India, 2011: 330-336.
[10] Zhang X, Hu Y, Hu L, et al. Enhanced detection of bearing faults based on signal cepstrum pre-whitening and stochastic resonance[J]. Journal of Mechanical Engineering, 2012, 48(23):83-89. DOI:10.3901/JME.2012.23.083. (in Chinese)
[11] Pan H Y, Yang Y, Li X, et al. Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 114: 189-211. DOI:10.1016/j.ymssp.2018.05.019.
[12] Selesnick I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560-3575. DOI:10.1109/tsp.2011.2143711.
[13] Wu Z H, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. DOI:10.1142/s1793536909000047.
[14] Cheng J. Local characteristic-scale decomposition method and its application to gear fault diagnosis[J]. Journal of Mechanical Engineering, 2012, 48(09):64-71. DOI:10.3901/JME.2012.09.064. (in Chinese)
[15] Yi C C, Lü Y, Dang Z, et al. Quaternion singular spectrum analysis using convex optimization and its application to fault diagnosis of rolling bearing[J]. Measurement, 2017, 103: 321-332. DOI:10.1016/j.measurement.2017.02.047.
[16] Yan X, Jia M, Morphological demodulation method based on improved singular spectrum decomposition and its application in rolling bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2017, 53(7): 104-112. DOI:10.3901/JME.2017.07.104. (in Chinese)
[17] Zhao X, Ye B, Chen T. Extraction method of faint fault feature based on wavelet-SVD difference spectrum[J]. Journal of Mechanical Engineering, 2012, 48(7):37-48. DOI:10.3901/JME.2012.07.037. (in Chinese)