|Table of Contents|

[1] Da Bo, , Yu Hongfa, et al. Effect of carbonation-drying-wetting on durabilityof coral aggregate seawater concrete [J]. Journal of Southeast University (English Edition), 2021, 37 (1): 67-74. [doi:10.3969/j.issn.1003-7985.2021.01.009]
Copy

Effect of carbonation-drying-wetting on durabilityof coral aggregate seawater concrete()
干湿-碳化耦合作用对全珊瑚海水混凝土耐久性的影响
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 1
Page:
67-74
Research Field:
Materials Sciences and Engineering
Publishing date:
2021-03-20

Info

Title:
Effect of carbonation-drying-wetting on durabilityof coral aggregate seawater concrete
干湿-碳化耦合作用对全珊瑚海水混凝土耐久性的影响
Author(s):
Da Bo1 2 3 4 Yu Hongfa5 Ma Haiyan5 Dou Xuemei5 Wu Zhangyu5 Chen Yan1
1College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
2Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
3Nantong Institute of Marine and Offshore Engineering, Hohai University, Nantong 226300, China
4Key Laboratory of Coastal Disaster and Defence of Ministry of Education, Hohai University, Nanjing 210098, China
5Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
达波1 2 3 4 余红发5 麻海燕5 窦雪梅5 吴彰钰5 陈岩1
1河海大学港口海岸与近海工程学院, 南京 210098; 2河海大学长江保护与绿色发展研究院, 南京 210098; 3南通河海大学海洋与近海工程研究院, 南通 226300; 4河海大学海岸灾害及防护教育部重点实验室, 南京 210098; 5南京航空航天大学土木工程系, 南京 210016
Keywords:
coral aggregate seawater concrete drying-wetting cycles carbonation-drying-wetting cycles mass loss rate relative dynamic elastic modulus ultrasound wave velocity
全珊瑚海水混凝土 干湿循环 干湿-碳化耦合作用 质量损失率 动弹性模量 超声波波速
PACS:
TU528
DOI:
10.3969/j.issn.1003-7985.2021.01.009
Abstract:
Based on the drying-wetting cycles experiment and the carbonation-drying-wetting cycles experiment for coral aggregate seawater concrete(CASC)with different strength grades, the effects of carbonation-drying-wetting on the durability of CASC are studied with the surface state, mass loss rate, relative dynamic elastic modulus, ultrasonic wave velocity and cube compressive strength as indices. Results show that the mass loss rate of CASC increases gradually with the increase in cycle times in the drying-wetting and carbonation-drying-wetting cycles. The mass loss rate increases relatively slowly at the initial stage but it increases remarkably after 10 cycles. The relative dynamic elastic modulus and ultrasonic wave velocity decrease gradually with the increase in cycle times. After 6 cycles, the decrease rate of the relative dynamic elastic modulus and ultrasonic wave velocity of CASC tends to be flat and the surface is slightly damaged. Compared with the initial 28 d cube compressive strength, the cube compressive strength of CASC decreases by 8.8% to 11.0%. Drying-wetting cycles and carbonation can accelerate seawater erosion on CASC, and drying-wetting cycles result in salting-out and accelerate the destruction of concrete. Therefore, the carbonation-drying-wetting accelerates the destruction of CASC.
通过对不同强度等级的全珊瑚海水混凝土(CASC)进行海水干湿循环试验和海水干湿-碳化耦合循环试验, 以表面状态、质量损失率、动弹性模量、超声波波速、立方体抗压强度为评价指标, 研究干湿循环、碳化和干湿-碳化耦合作用对CASC耐久性的影响.结果表明:干湿循环、干湿-碳化耦合作用下, CASC的质量损失率均随着侵蚀时间的延长而逐渐增加, 先期比较平缓, 增长幅度不大, 经过10次循环后, 其质量损失率的增长幅度明显增大;而CASC的动弹性模量和超声波波速均随着循环次数的增加逐渐降低, 经过6次循环后, 其速率趋于平缓, 表面有微损伤;与初始28 d立方体抗压强度相比, CASC的立方体抗压强度下降幅度为8.8%~11.0%.干湿循环和碳化作用对CASC的海水侵蚀均有加速作用, 干湿循环促进盐析现象的产生, 加快混凝土的破坏.因此, 干湿-碳化耦合作用加速CASC的破坏.

References:

[1] Yu H F, Da B, Ma H Y, et al. Durability of concrete structures in tropical atoll environment[J].Ocean Engineering, 2017, 135: 1-10. DOI:10.1016/j.oceaneng.2017.02.020.
[2] Da B, Yu H F, Ma H Y, et al. Reliability of service life of coral aggregate seawater concrete structure in tropic island reef environment[J].Journal of the Chinese Ceramic Society, 2018, 46(11): 1613-1621. DOI:10.14062/j.issn.0454-5648.2018.11.16. (in Chinese)
[3] Da B, Yu H F, Ma H Y, et al.Experimental investigation of whole stress-strain curves of coral concrete[J]. Construction and Building Materials, 2016, 122: 81-89. DOI:10.1016/j.conbuildmat.2016.06.064.
[4] Chen J K, Jiang M Q, Zhu J. Damage evolution in cement mortar due to erosion of sulphate[J].Corrosion Science, 2008, 50(9): 2478-2483. DOI:10.1016/j.corsci.2008.05.021.
[5] Zeng G W, Yang X H, Yin A Y, et al. Simulation of damage evolution and crack propagation in three-point bending pre-cracked asphalt mixture beam[J].Construction and Building Materials, 2014, 55: 323-332. DOI:10.1016/j.conbuildmat.2014.01.058.
[6] Liu C, Xie D Q, She W, et al. Numerical modelling of elastic modulus and diffusion coefficient of concrete as a three-phase composite material[J].Construction and Building Materials, 2018, 189: 1251-1263. DOI:10.1016/j.conbuildmat.2018.08.191.
[7] Da B, Yu H F, Ma H Y, et al. Research on compression behavior of coral aggregate reinforced concrete columns under large eccentric compression loading[J].Ocean Engineering, 2018, 155: 251-260. DOI:10.1016/j.oceaneng.2018.02.037.
[8] Han S H, Park W S, Yang E I. Evaluation of concrete durability due to carbonation in harbor concrete structures[J].Construction and Building Materials, 2013, 48: 1045-1049. DOI:10.1016/j.conbuildmat.2013.07.057.
[9] Da B, Yu H F, Ma H Y, et al. Reinforcement corrosion research based on electrochemical impedance spectroscopy for coral aggregate seawater concrete in a seawater immersion environment[J].Journal of Testing and Evaluation, 2020, 48(2): 20180197. DOI:10.1520/jte20180197.
[10] Kakooei S, Akil H M, Dolati A, et al. The corrosion investigation of rebar embedded in the fibers reinforced concrete[J].Construction and Building Materials, 2012, 35: 564-570. DOI:10.1016/j.conbuildmat.2012.04.051.
[11] Da B, Yu H F, Ma H Y, et al. Factors influencing durability of coral concrete structure in the South China sea[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 253-260. DOI:10.14062/j.issn.0454-5648.2016.02.11. (in Chinese)
[12] Da B, Yu H F, Ma H Y, et al.Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123: 47-58. DOI:10.1016/j.conbuildmat.2016.06.135.
[13] Wang J, Feng P, Hao T Y, et al. Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes[J].Construction and Building Materials, 2017, 147: 272-285. DOI:10.1016/j.conbuildmat.2017.04.169.
[14] Da B, Yu H F, Ma H Y, et al. Reinforcement corrosion research based on the linear polarization resistance method for coral aggregate seawater concrete in a marine environment[J].Anti-Corrosion Methods and Materials, 2018, 65(5): 458-470. DOI:10.1108/acmm-03-2018-1911.
[15] Da B, Yu H F, Ma H Y, et al. Influence of inhibitors on reinforced bar corrosion of coral aggregate seawater concrete [J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(2): 152–159. DOI:10.11902/1005.4537.2018. 040. (in Chinese)
[16] Silva R V, de Brito J, Dhir R K. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete[J].Journal of Cleaner Production, 2016, 112: 2171-2186. DOI:10.1016/j.jclepro.2015.10.064.
[17] Tan Y S, Yu H F, Mi R J, et al. Compressive strength evaluation of coral aggregate seawater concrete(CAC)by non-destructive techniques[J].Engineering Structures, 2018, 176: 293-302. DOI:10.1016/j.engstruct.2018.08.104.
[18] Li Y, Liu X F, Li J Q. Bond properties of FRP-concrete interface with nano-modified epoxy resin under wet-dry cycles[J].KSCE Journal of Civil Engineering, 2017, 21(4): 1379-1385. DOI:10.1007/s12205-016-0921-7.
[19] Song Z J, Jiang L H, Liu J Z, et al. Influence of cation type on diffusion behavior of chloride ions in concrete[J].Construction and Building Materials, 2015, 99: 150-158. DOI:10.1016/j.conbuildmat.2015.09.033.
[20] Wang J B, Niu D T, Song Z P. Damage layer thickness and formation mechanism of shotcrete with and without steel fiber under sulfate corrosion of dry-wet cycles by ultrasound plane testing method[J].Construction and Building Materials, 2016, 123: 346-356. DOI:10.1016/j.conbuildmat.2016.06.146.
[21] Jin Z Q, Zhao X, Zhao T J, et al. Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones[J].Construction and Building Materials, 2018, 177: 170-183. DOI:10.1016/j.conbuildmat.2018.05.120.
[22] Yang L M, Yu H F, Ma H Y, et al. Resistance of concrete to magnesium sulfate attack under combined action of carbonation and dry-wet cycles [J]. Acta Materiae Compositae Sinica, 2012, 29: 127–133. DOI:10.13801/j. cnki.fhclxb.2012.05.020. (in Chinese)
[23] Gowripalan N, Mohamed H M. Chloride-ion induced corrosion of galvanized and ordinary steel reinforcement in high-performance concrete[J].Cement and Concrete Research, 1998, 28(8): 1119-1131. DOI:10.1016/S0008-8846(98)00090-8.
[24] Shaheen F, Pradhan B. Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions[J].Cement and Concrete Research, 2017, 91: 73-86. DOI:10.1016/j.cemconres.2016.10.008.
[25] Liu J Z, Geng J D, Wang H, et al. Influence of nitrite on chemical composition of passivation film of steel bars under the coupling effects of carbonization and chloride[J].Anti-Corrosion Methods and Materials, 2019, 66(2): 230-235. DOI:10.1108/acmm-09-2018-1999.

Memo

Memo:
Biography: Da Bo(1988—), male, doctor, associate professor, dabo@hhu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11832013, 51878350), the Fundamental Research Funds for the Central Universities(No.B210202023), the Natural Science Foundation of Jiangsu Province(No.BK20180433), the Water Resources Science and Technology Project of Jiangsu Province(No.2020017), the Basic Science Research Project of Nantong(No.JC2020120), the Key Laboratory of Coastal Disaster and Defence of Ministry of Education(Hohai University)(No.202006).
Citation: Da Bo, Yu Hongfa, Ma Haiyan, et al.Effect of carbonation-drying-wetting on durability of coral aggregate seawater concrete[J].Journal of Southeast University(English Edition), 2021, 37(1):67-74.DOI:10.3969/j.issn.1003-7985.2021.01.009.
Last Update: 2021-03-20