|Table of Contents|

[1] Liu Xueyu, Mei Shue, Zhong Weijun,. Firm review revelation policy consideringsocial ties among consumers [J]. Journal of Southeast University (English Edition), 2021, 37 (1): 98-103. [doi:10.3969/j.issn.1003-7985.2021.01.013]
Copy

Firm review revelation policy consideringsocial ties among consumers()
考虑消费者间社交关系的评论展示策略研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 1
Page:
98-103
Research Field:
Economy and Management
Publishing date:
2021-03-20

Info

Title:
Firm review revelation policy consideringsocial ties among consumers
考虑消费者间社交关系的评论展示策略研究
Author(s):
Liu Xueyu Mei Shu’e Zhong Weijun
School of Economics and Management, Southeast University, Nanjing 211189, China
刘雪羽 梅姝娥 仲伟俊
东南大学经济管理学院, 南京 211189
Keywords:
online product review social tie review revelation policy social commerce
在线产品评论 社交关系 评论展示策略 社交商务
PACS:
C934
DOI:
10.3969/j.issn.1003-7985.2021.01.013
Abstract:
An optimization model is proposed to analyze the optimal review revelation policies and consumer online social network management strategies of e-commerce firms. The results show that displaying friend reviews to consumers does not necessarily increase firms’ profits. Only when positive reviews account for a large proportion of all the reviews and when the cost of showing friend reviews is not high, can showing friend reviews be more profitable than not showing such information. The distribution of social ties among consumers can affect firms’ profits. Even in the case that showing friend reviews to consumers is more profitable, an increase in the proportion of strong ties is not necessarily beneficial to firms. Only when the proportion of positive reviews is large enough, can firms’ profits increase with the increase in the proportion of strong ties among consumers. Moreover, the degree of consumer distrust in the average quality rating can also affect firms’ strategies for managing consumer online social networks. As the degree of consumer distrust in the average quality rating rises, firms are more likely to obtain higher profits by taking measures to increase the proportion of strong ties among consumers on their websites.
构建优化模型分析了电商企业的最优评论展示策略以及对消费者在线社交网络的管理策略.研究表明, 为消费者展示朋友评论不一定能为企业带来利润增加, 仅当好评占比较高且为消费者展示朋友评论付出的成本较低时, 展示朋友评论才能增加企业利润.人群中社交关系分布情况会影响企业利润, 即使在展示朋友评论可以增加企业利润的情况下, 人群中强关系占比的提高也并非一定对企业有利, 仅当好评占比足够高时, 消费者群体中强关系占比的增加才能提高企业利润.此外, 消费者对产品质量平均评分的不信任程度也会影响企业对消费者在线社交网络的管理策略.随着消费者对产品质量平均评分不信任程度的提高, 企业更有可能通过采取措施增加网站用户间强关系占比实现利润增长.

References:

[1] Chevalier J A, Mayzlin D. The effect of word of mouth on sales: Online book reviews[J]. Journal of Marketing Research, 2006, 43(3): 345-354. DOI:10.1509/jmkr.43.3.345.
[2] Li X X, Hitt L M. Self-selection and information role of online product reviews[J]. Information Systems Research, 2008, 19(4): 456-474. DOI:10.1287/isre.1070.0154.
[3] Zhu F, Zhang X M. Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics[J]. Journal of Marketing, 2010, 74(2): 133-148. DOI:10.1509/jmkg.74.2.133.
[4] Weinburger M C, Dillon W R, Olson J. The effects of unfavorable product information[J]. Advances in Consumer Research, 1980, 7: 528-532.
[5] Herr P M, Kardes F R, Kim J. Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective[J]. Journal of Consumer Research, 1991, 17(4): 454-462. DOI:10.1086/208570.
[6] Mizerski R W. An attribution explanation of the disproportionate influence of unfavorable information[J]. Journal of Consumer Research, 1982, 9(3): 301-310. DOI:10.1086/208925.
[7] Yi C, Jiang Z J, Li X P, et al. Leveraging user-generated content for product promotion: The effects of firm-highlighted reviews[J]. Information Systems Research, 2019, 30(3): 711-725. DOI:10.1287/isre.2018.0807.
[8] Li X X, Connecticut U O. Revealing or non-revealing: The impact of review disclosure policy on firm profitability[J]. MIS Quarterly, 2017, 41(4): 1335-1345. DOI:10.25300/misq/2017/41.4.14.
[9] Chen Y B, Xie J H. Online consumer review: Word-of-mouth as a new element of marketing communication mix[J]. Management Science, 2008, 54(3): 477-491. DOI:10.1287/mnsc.1070.0810.
[10] Liu Y, Feng J, Liao X W. When online reviews meet sales volume information: Is more or accurate information always better?[J].Information Systems Research, 2017, 28(4): 723-743. DOI:10.1287/isre.2017.0715.
[11] Sun Y C, Dong X J, McIntyre S. Motivation of user-generated content: Social connectedness moderates the effects of monetary rewards[J].Marketing Science, 2017, 36(3): 329-337. DOI:10.1287/mksc.2016.1022.
[12] Zhang Y C, Godes D. Learning from online social ties[J]. Marketing Science, 2018, 37(3): 425-444. DOI:10.1287/mksc.2017.1076.
[13] Brown J J, Reingen P H. Social ties and word-of-mouth referral behavior[J]. Journal of Consumer Research, 1987, 14(3): 350-362. DOI:10.1086/209118.
[14] Bitter S, Grabner-Kr�E4;uter S. Consequences of customer engagement behavior: When negative Facebook posts have positive effects[J]. Electronic Markets, 2016, 26(3): 219-231. DOI:10.1007/s12525-016-0220-7.
[15] Wang J C, Chang C H. How online social ties and product-related risks influence purchase intentions: A Facebook experiment[J]. Electronic Commerce Research and Applications, 2013, 12(5): 337-346. DOI:10.1016/j.elerap.2013.03.003.
[16] Wu R H, Qiu C. Seller manipulation of consumer reviews under competition [C]// Proceedings of the Annual Hawaii International Conference on System Sciences. Koloa, HI, USA, 2016: 3575-3583.
[17] Boleslavsky R, Cotton C S, Gurnani H. Demonstrations and price competition in new product release[J]. Management Science, 2017, 63(6): 2016-2026. DOI:10.1287/mnsc.2016.2449.
[18] Hu N, Pavlou P A, Zhang J. On self-selection biases in online product reviews[J]. MIS Quarterly, 2017, 41(2): 449-471. DOI:10.25300/misq/2017/41.2.06.
[19] Kornish L J, Li Q P. Optimal referral bonuses with asymmetric information: Firm-offered and interpersonal incentives[J]. Marketing Science, 2010, 29(1): 108-121. DOI:10.1287/mksc.1080.0484.

Memo

Memo:
Biographies: Liu Xueyu(1994—), female, Ph.D. candidate; Mei Shu’e(corresponding author), female, doctor, professor, meishue@seu.edu.cn.
Foundation item: The National Social Science Foundation of China(No.17BGL196).
Citation: Liu Xueyu, Mei Shu’e, Zhong Weijun.Firm review revelation policy considering social ties among consumers[J].Journal of Southeast University(English Edition), 2021, 37(1):98-103.DOI:10.3969/j.issn.1003-7985.2021.01.013.
Last Update: 2021-03-20