|Table of Contents|

[1] Nguyen Van Liem, , Zhang Jianrun, et al. Effects of crankpin bearing speed and dimension on engine power [J]. Journal of Southeast University (English Edition), 2021, 37 (2): 119-127. [doi:10.3969/j.issn.1003-7985.2021.02.001]
Copy

Effects of crankpin bearing speed and dimension on engine power()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 2
Page:
119-127
Research Field:
Traffic and Transportation Engineering
Publishing date:
2021-06-20

Info

Title:
Effects of crankpin bearing speed and dimension on engine power
Author(s):
Nguyen Van Liem1 2 3 Zhang Jianrun1 Jiao Renqiang2 Huang Dacheng1
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
3Faculty of Automotive and Power Machinery Engineering, Thai Nguyen University of Technology, Thai Nguyen 23000, Vietnam
Keywords:
slider-crank mechanism crankpin bearing lubrication performance friction loss
PACS:
U461.3
DOI:
10.3969/j.issn.1003-7985.2021.02.001
Abstract:
A new method combining the slider-crank mechanism dynamic(SCM)and crankpin bearing(CB)lubrication models is proposed to analyze the effects of CB dimensions and engine speed on the lubrication efficiency and friction power loss(LE-FPL)of an engine. The dynamic and lubrication equations are then solved on the basis of the combined model via an algorithm developed in MATLAB. To enhance the reliability of the research results, the experimental data of combustion gas pressure is applied for simulation. The load bearing capacity(or oil film pressure), friction force, friction coefficient, and eccentricity ratio of the CB are selected as objective functions to evaluate the LE-FPL. The effects of engine speed, bearing width, and bearing radius on the LE-FPL are then evaluated. Results show that reductions in engine speed, bearing width, or bearing radius can decrease the FPL but reduce the LE of the engine and vice versa. In particular, the LE-FPL can effectively be improved by slightly reducing the bearing width and bearing radius or maintaining engine speed at 2 000 r/min.

References:

[1] Zhao B, Dai X D, Zhang Z N, et al. A new numerical method for piston dynamics and lubrication analysis[J].Tribology International, 2016, 94: 395-408. DOI:10.1016/j.triboint.2015.09.037.
[2] Meng X H, Ning L P, Xie Y B, et al. Effects of the connecting-rod-related design parameters on the piston dynamics and the skirt-liner lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227(6): 885-898. DOI:10.1177/0954407012464025.
[3] Li Y Y, Chen G P, Sun D Y, et al. Dynamic analysis and optimization design of a planar slider-crank mechanism with flexible components and two clearance joints[J]. Mechanism and Machine Theory, 2016, 99: 37-57. DOI:10.1016/j.mechmachtheory.2015.11.018.
[4] Cho S H, Ahn S T, Kim Y H. A simple model to estimate the impact force induced by piston slap[J]. Journal of Sound and Vibration, 2002, 255(2): 229-242. DOI:10.1006/jsvi.2001.4152.
[5] Liu K, Xie Y B, Gui C L. A comprehensive study of the friction and dynamic motion of the piston assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1998, 212(3): 221-226. DOI:10.1243/1350650981542038.
[6] Mansouri S H, Wong V W. Effects of piston design parameters on piston secondary motion and skirt-liner friction[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2005, 219(6): 435-449. DOI:10.1243/135065005x34026.
[7] Patir N, Cheng H S. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology, 1979, 101(2): 220-229. DOI:10.1115/1.3453329.
[8] Daniel G B, Cavalca K L. Analysis of the dynamics of a slider-crank mechanism with hydrodynamic lubrication in the connecting rod-slider joint clearance[J]. Mechanism and Machine Theory, 2011, 46(10): 1434-1452. DOI:10.1016/j.mechmachtheory.2011.05.007.
[9] Wang X L, Zhang J Y, Dong H. Analysis of bearing lubrication under dynamic loading consideringmicropolar and cavitating effects[J]. Tribology International, 2011, 44(9): 1071-1075. DOI:10.1016/j.triboint.2011.05.002.
[10] Raj A, Sinha P. Transverse roughness in short journal bearing under dynamic loading[J]. Tribology International, 1983, 16(5): 245-251. DOI:10.1016/0301-679X(83)90081-6.
[11] Zhang H, Hua M, Dong G N, et al. Boundary slip surface design for high speed water lubricated journal bearings[J]. Tribology International, 2014, 79: 32-41. DOI:10.1016/j.triboint.2014.05.022.
[12] Patir N, Cheng H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, 1978, 100(1): 12-17. DOI:10.1115/1.3453103.
[13] Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625-633. DOI:10.1243/pime_proc_1970_185_069_02.
[14] Zhao B, Zhang Z N, Fang C C, et al. Modeling and analysis of planar multibody system with mixed lubricated revolute joint[J]. Tribology International, 2016, 98: 229-241. DOI:10.1016/j.triboint.2016.02.024.
[15] Nguyen V, Wu Z P, Le V. Optimization of crankpin bearing lubrication under dynamic loading considering effect of micro asperity contact[J]. Industrial Lubrication and Tribology, 2020, 72(10): 1173-1179. DOI:10.1108/ilt-02-2020-0072.
[16] Wu Z P, Nguyen V, Zhang Z H, et al. Study on curved surface design of sliding pair based on stepped topography model[J]. Industrial Lubrication and Tribology, 2019, 72(1): 86-92. DOI:10.1108/ilt-04-2019-0121.
[17] Wang P L, Nguyen V, Wu X Y, et al. Research on different structures of dimpled textures on improving the LE-FPL of engine[J]. Industrial Lubrication and Tribology, 2021. DOI:10.1108/ilt-07-2020-0286.
[18] Christiansen C K, Walther J H, Klit P, et al. Investigation of journal orbit and flow pattern in a dynamically loaded journal bearing[J]. Tribology International, 2017, 114: 450-457. DOI:10.1016/j.triboint.2017.04.013.
[19] Braun M J, Hannon W M.Cavitation formation and modelling for fluid film bearings: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(9): 839-863. DOI:10.1243/13506501jet772.

Memo

Memo:
Biographies: Nguyen Van Liem(1986—), male, doctor; Zhang Jianrun(corresponding author), male, doctor, professor, zhangjr@seu.edu.cn.
Foundation items: The National Key Research and Development Plan(No. 2019YFB2006402), the Key Project of Scientific Research Plan of Hubei Polytechnic University(No. 21xjz02A), the Open Fund Project of Hubei Key Laboratory of Intelligent Transportation Technology and Device, Hubei Polytechnic University(No. 2020XY105, 2020XZ107).
Citation: Nguyen Van Liem, Zhang Jianrun, Jiao Renqiang, et al.Effects of crankpin bearing speed and dimension on engine power[J].Journal of Southeast University(English Edition), 2021, 37(2):119-127.DOI:10.3969/j.issn.1003-7985.2021.02.001.
Last Update: 2021-06-20