[1] Shabalina S A, Spiridonov N A, Kashina A. Sounds of silence: Synonymous nucleotides as a key to biological regulation and complexity[J].Nucleic Acids Research, 2013, 41(4): 2073-2094. DOI:10.1093/nar/gks1205.
[2] Plotkin J B, Kudla G. Synonymous but not the same: The causes and consequences of codon bias[J].Nature Reviews Genetics, 2011, 12(1): 32-42. DOI:10.1038/nrg2899.
[3] Hunt R C, Simhadri V L, Iandoli M, et al. Exposing synonymous mutations[J].Trends in Genetics, 2014, 30(7): 308-321. DOI:10.1016/j.tig.2014.04.006.
[4] Chamary J V, Hurst L D. Biased codon usage near intron-exon junctions: Selection on splicing enhancers, splice-site recognition or something else? [J].Trends in Genetics, 2005, 21(5): 256-259. DOI:10.1016/j.tig.2005.03.001.
[5] Stoletzki N. Conflicting selection pressures on synonymous codon use in yeast suggest selection on mRNA secondary structures[J].BMC Evolutionary Biology, 2008, 8(1): 1-9. DOI:10.1186/1471-2148-8-224.
[6] Warnecke T, Batada N N, Hurst L D. The impact of the nucleosome code on protein-coding sequence evolution in yeast[J].PLoS Genetics, 2008, 4(11): e1000250. DOI:10.1371/journal.pgen.1000250.
[7] Parmley J L, Chamary J V, Hurst L D. Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers[J].Molecular Biology and Evolution, 2006, 23(2): 301-309. DOI:10.1093/molbev/msj035.
[8] Warnecke T, Hurst L D. Evidence for a trade-off between translational efficiency and splicing regulation in determining synonymous codon usage in drosophila melanogaster[J].Molecular Biology and Evolution, 2007, 24(12): 2755-2762. DOI:10.1093/molbev/msm210.
[9] Gu W J, Wang X F, Zhai C Y, et al. Selection on synonymous sites for increased accessibility around miRNA binding sites in plants[J].Molecular Biology and Evolution, 2012, 29(10): 3037-3044. DOI:10.1093/molbev/mss109.
[10] Kudla G, Murray A W, Tollervey D, et al. Coding-sequence determinants of gene expression in escherichia coli[J].Science, 2009, 324(5924): 255-258. DOI:10.1126/science.1170160.
[11] Gu W J, Zhou T, Wilke C O. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes[J].PLoS Computational Biology, 2010, 6(2): e1000664. DOI:10.1371/journal.pcbi.1000664.
[12] Tuller T, Waldman Y Y, Kupiec M, et al. Translation efficiency is determined by both codon bias and folding energy[J].PNAS, 2010, 107(8): 3645-3650. DOI:10.1073/pnas.0909910107.
[13] Gingold H, Pilpel Y. Determinants of translation efficiency and accuracy[J].Molecular Systems Biology, 2011, 7: 481. DOI:10.1038/msb.2011.14.
[14] Thanaraj T A, Argos P. Ribosome-mediated translational pause and protein domain organization[J].Protein Science, 1996, 5(8): 1594-1612. DOI:10.1002/pro.5560050814.
[15] Komar A A, Lesnik T, Reiss C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation[J]. FEBS Letters, 1999, 462(3): 387-391. DOI:10.1016/s0014-5793(99)01566-5.
[16] Kharel P, Balaratnam S, Beals N, et al. The role of RNA G-quadruplexes in human diseases and therapeutic strategies[J].Wiley Interdisciplinary Reviews RNA, 2020, 11(1): e1568. DOI:10.1002/wrna.1568.
[17] Kwok C K, Marsico G, Sahakyan A B, et al. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome[J].Nature Methods, 2016, 13(10): 841-844. DOI:10.1038/nmeth.3965.
[18] Huang H L, Zhang J, Harvey S E, et al. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF[J].Genes & Development, 2017, 31(22): 2296-2309. DOI:10.1101/gad.305862.117.
[19] Beaudoin J D, Perreault J P. Exploring mRNA 3’-UTR G-quadruplexes: Evidence of roles in both alternative polyadenylation and mRNA shortening[J].Nucleic Acids Research, 2013, 41(11): 5898-5911. DOI:10.1093/nar/gkt265.
[20] Subramanian M, Rage F, Tabet R, et al. G-quadruplex RNA structure as a signal for neurite mRNA targeting[J].EMBO Reports, 2011, 12(7): 697-704. DOI:10.1038/embor.2011.76.
[21] Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA: Isolation and characterization of an RNA-transporting granule[J].Neuron, 2004, 43(4): 513-525. DOI:10.1016/j.neuron.2004.07.022.
[22] Stefanovic S, Bassell G J, Mihailescu M R. G quadruplex RNA structures in PSD-95 mRNA: Potential regulators of miR-125a seed binding site accessibility[J].RNA, 2015, 21(1): 48-60. DOI:10.1261/rna.046722.114.
[23] Beaudoin J D, Perreault J P. 5’-UTR G-quadruplex structures acting as translational repressors[J].Nucleic Acids Research, 2010, 38(20): 7022-7036. DOI:10.1093/nar/gkq557.
[24] Bugaut A, Balasubramanian S. 5′-UTR RNA G-quadruplexes: Translation regulation and targeting[J].Nucleic Acids Research, 2012, 40(11): 4727-4741. DOI:10.1093/nar/gks068.
[25] Kamura T, Katsuda Y, Kitamura Y, et al. G-quadruplexes in mRNA: A key structure for biological function[J].Biochemical and Biophysical Research Communications, 2020, 526(1): 261-266. DOI:10.1016/j.bbrc.2020.02.168.
[26] Kumari S, Bugaut A, Huppert J L, et al. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation[J].Nature Chemical Biology, 2007, 3(4): 218-221. DOI:10.1038/nchembio864.
[27] Murat P, Marsico G, Herdy B, et al. RNA G-quadruplexes at upstream open reading frames cause DHX36-and DHX9-dependent translation of human mRNAs[J].Genome Biology, 2018, 19(1): 229. DOI:10.1186/s13059-018-1602-2.
[28] Simone R, Fratta P, Neidle S, et al. G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome[J].FEBS Letters, 2015, 589(14): 1653-1668. DOI:10.1016/j.febslet.2015.05.003.
[29] Fay M M, Lyons S M, Ivanov P. RNA G-quadruplexes in biology: Principles and molecular mechanisms[J].Journal of Molecular Biology, 2017, 429(14): 2127-2147. DOI:10.1016/j.jmb.2017.05.017.
[30] Mirihana Arachchilage G, Hetti Arachchilage M, Venkataraman A, et al. Stable G-quadruplex enabling sequences are selected against by the context-dependent codon bias[J].Gene, 2019, 696: 149-161. DOI:10.1016/j.gene.2019.02.006.
[31] Kinsella R J, KE4;hE4;ri A, Haider S, et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space[J].Database, 2011, 2011(10.1093): database. DOI:10.1093/database/bar030.
[32] Chen Y H, Wang X W. miRDB: An online database for prediction of functional microRNA targets[J].Nucleic Acids Research, 2020, 48(D1): D127-D131. DOI:10.1093/nar/gkz757.
[33] Liu W J, Wang X W. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data[J].Genome Biology, 2019, 20(1): 18. DOI:10.1186/s13059-019-1629-z.
[34] Wright F. The ‘effective number of codons’ used in a gene[J].Gene, 1990, 87(1): 23-29. DOI:10.1016/0378-1119(90)90491-9.
[36] Nielsen R. Molecular signatures of natural selection[J].Annual Review of Genetics, 2005, 39: 197-218. DOI:10.1146/annurev.genet.39.073003.112420.
[37] Bedrat A, Lacroix L, Mergny J L. Re-evaluation of G-quadruplex propensity with G4Hunter[J].Nucleic Acids Research, 2016, 44(4): 1746-1759. DOI:10.1093/nar/gkw006.
[38] Lacroix L. G4HunterApps[J].Bioinformatics, 2019, 35(13): 2311-2312. DOI:10.1093/bioinformatics/bty951.
[39] Puig Lombardi E, LondoF1;o-Vallejo A. A guide to computational methods for G-quadruplex prediction[J].Nucleic Acids Research, 2020, 48(1): 1-15. DOI:10.1093/nar/gkz1097.
[40] Guo J U, Bartel D P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria[J].Science, 2016, 353(6306):5371. DOI:10.1126/science.aaf5371.