|Table of Contents|

[1] Yang Li, , Ma Yinhang, et al. In situ nanobubble sizing by visualization particle trackingand image-based dynamic light scattering [J]. Journal of Southeast University (English Edition), 2021, 37 (3): 237-244. [doi:10.3969/j.issn.1003-7985.2021.03.001]
Copy

In situ nanobubble sizing by visualization particle trackingand image-based dynamic light scattering()
基于可视化粒子追踪和图像动态光散射技术的 原位纳米气泡粒径测量
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 3
Page:
237-244
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2021-09-20

Info

Title:
In situ nanobubble sizing by visualization particle trackingand image-based dynamic light scattering
基于可视化粒子追踪和图像动态光散射技术的 原位纳米气泡粒径测量
Author(s):
Yang Li1 2 3 Ma Yinhang4 Jin Juan1 2 3 Yang Fujun4 Yang Fang1 2 3 Huang Bin1 2 3 Li Yan1 2 3 Gu Ning1 2 3
1School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
2State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
3Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
4 School of Civil Engineering, Southeast University, Nanjing 210096, China
杨莉1 2 3 马银行4 金娟1 2 3 杨福俊4 杨芳1 2 3黄斌1 2 3 李艳1 2 3 顾宁1 2 3
1东南大学生物科学与医学工程学院, 南京 210096; 2东南大学生物电子国家重点实验室, 南京 210096; 3东南大学江苏省生物材料与器件重点实验室, 南京 210096; 4东南大学土木工程学院, 南京 210096
Keywords:
real-time acquisition nanobubble(NB)sizing visualization particle tracking image dynamic light scattering Brownian motion
实时采集 纳米气泡粒径测量 可视化粒子跟踪 图像动态光散射 布朗运动
PACS:
O433.1
DOI:
10.3969/j.issn.1003-7985.2021.03.001
Abstract:
A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs). First, the in situ size distribution of NBs was visualized by dark-field microscopy. Then, real-time size during the preparation was measured using image-based dynamic light scattering, and the longitudinal size distribution of NBs in the sample cell was obtained in a steady state. Results show that this strategy can provide a detailed and accurate size of bubbles in the whole sample compared with the commercial ZetaSizer Nano equipment. Therefore, the developed method is a real-time and simple technology with excellent accuracy, providing new insights into the accurate measurement of the size distribution of NBs or nanoparticles in solution.
为实现对纳米气泡粒径的原位和实时测量, 将可视化粒子追踪与图像动态光散射技术相结合, 开发出一种新的测量方法.首先, 基于可视化方法, 利用暗场显微镜成像, 得到纳米气泡的原位粒径分布.然后, 采用图像动态光散射法, 对纳米气泡制备过程进行实时粒径监测, 并得到了样品池中纳米气泡在稳态下的纵向粒径分布.结果表明, 与商用ZetaSizer纳米粒子测量仪相比, 利用所提测量方法能够获得整个样品池中的纳米气泡粒径信息, 实验数据更详细, 结果更准确.因此, 该测量方法是一种准确性较高、实时简单的测量技术, 为准确测量纳米气泡和纳米粒子的粒径分布提供了一种新手段.

References:

[1] Duan L, Yang L, Jin J, et al. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications[J]. Theranostics, 2020, 10(2): 462-483. DOI:10.7150/thno.37593.
[2] Agarwal A, Ng W J, Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175-1180. DOI:10.1016/j.chemosphere.2011.05.054.
[3] Li M X, Liu Y, Chen J P, et al. Platelet bio-nanobubbles as microvascular recanalization nanoformulation for acute ischemic stroke lesion theranostics[J]. Theranostics, 2018, 8(18): 4870-4883. DOI:10.7150/thno.27466.
[4] Cavalli R, Bisazza A, Rolfo A, et al. Ultrasound-mediated oxygen delivery from chitosan nanobubbles[J]. International Journal of Pharmaceutics, 2009, 378(1/2): 215-217. DOI:10.1016/j.ijpharm.2009.05.058.
[5] Yin T H, Wang P, Zheng R Q, et al. Nanobubbles for enhanced ultrasound imaging of tumors[J]. International Journal of Nanomedicine, 2012, 7: 895-904. DOI:10.2147/IJN.S28830.
[6] Güvener N, Appold L, de Lorenzi F, et al. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations[J]. Methods, 2017, 130: 4-13. DOI:10.1016/j.ymeth.2017.05.018.
[7] Yang F, Li Y X, Chen Z P, et al.Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging[J]. Biomaterials, 2009, 30(23/24): 3882-3890. DOI:10.1016/j.biomaterials.2009.03.051.
[8] Yu X, Felicia P. Optimization of cavitation venturi tube design for pico and nano bubbles generation [J]. International Journal of Mining Science and Technology, 2015, 25(4): 523-529.DOI: 10.1016/j.ijmst.2015.05.002.
[9] Xu R. Light scattering: A review of particle characterization applications [J]. Particuology, 2015, 18: 11-21.DOI: 10.1016/j.partic.2014.05.002.
[10] Stetefeld J, McKenna S A, Patel T R. Dynamic light scattering: A practical guide and applications in biomedical sciences[J]. Biophysical Reviews, 2016, 8(4): 409-427. DOI:10.1007/s12551-016-0218-6.
[11] Salari A, Gnyawali V, Griffiths I M, et al. Shrinking microbubbles with microfluidics: Mathematical modelling to control microbubble sizes[J]. Soft Matter, 2017, 13(46): 8796-8806. DOI:10.1039/C7SM01418J.
[12] Sarkar K, Katiyar A, Jain P. Growth and dissolution of an encapsulated contrast microbubble: Effects of encapsulation permeability[J]. Ultrasound in Medicine & Biology, 2009, 35(8): 1385-1396. DOI:10.1016/j.ultrasmedbio.2009.04.010.
[13] Jing C, Gu Z, Ying Y L, et al. Chrominance to dimension: A real-time method for measuring the size of single gold nanoparticles[J]. Analytical Chemistry, 2012, 84(10): 4284-4291. DOI:10.1021/ac203118g.
[14] Bhandari P, Wang X L, Irudayaraj J. Oxygen nanobubble tracking by light scattering in single cells and tissues[J]. ACS Nano, 2017, 11(3): 2682-2688. DOI:10.1021/acsnano.6b07478.
[15] Jin J, Wang R, Tang J, et al. Dynamic tracking of bulk nanobubbles from microbubbles shrinkage to collapse [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589: 124430. DOI: 10.1016/j.colsurfa.2020.124430.
[16] Xu C Z, Cai X S, Zhang J, et al. Fast nanoparticle sizing by image dynamic light scattering[J]. Particuology, 2015, 19: 82-85.
[17] Zhou W, Zhang J, Liu LL, et al. Ultrafast image-based dynamic light scattering for nanoparticle sizing[J]. The Review of Scientific Instruments, 2015, 86(11): 115107. DOI:10.1063/1.4935503.
[18] Frisken B J. Revisiting the method of cumulants for the analysis of dynamic light-scattering data[J]. Applied Optics, 2001, 40(24): 4087-4091. DOI:10.1364/ao.40.004087.
[19] Koppel D E. Analysis of macromolecularpolydispersity in intensity correlation spectroscopy: The method of cumulants[J]. The Journal of Chemical Physics, 1972, 57(11): 4814-4820. DOI:10.1063/1.1678153.
[20] Jin J, Feng Z Q, Yang F, et al. Bulk nanobubbles fabricated by repeated compression of microbubbles[J]. Langmuir, 2019, 35(12): 4238-4245. DOI:10.1021/acs.langmuir.8b04314.
[21] Fu X W, Chen B, Tang J, et al.Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy[J]. Science Advances, 2017, 3(8): e1701160. DOI:10.1126/sciadv.1701160.
[22] Mailer A G, Clegg P S, Pusey P N. Particle sizing by dynamic light scattering: Non-linear cumulant analysis[J]. Journal of Physics Condensed Matter, 2015, 27(14): 145102. DOI:10.1088/0953-8984/27/14/145102.
[23] Hassan P A, Kulshreshtha S K. Modification to the cumulant analysis of polydispersity in quasielastic light scattering data[J]. Journal of Colloid and Interface Science, 2006, 300(2): 744-748. DOI:10.1016/j.jcis.2006.04.013.

Memo

Memo:
Biographies: Yang Li(1986—), female, Ph.D. candidate; Gu Ning(corresponding author), male, doctor, professor, guning@seu.edu.cn.
Foundation items: The National Key Research and Development Program of China(No. 2017YFA0104302), the National Natural Science Foundation of China(No. 51832001, 61821002, 81971750).
Citation: Yang Li, Ma Yinhang, Jin Juan, et al.In situ nanobubble sizing by visualization particle tracking and image-based dynamic light scattering[J].Journal of Southeast University(English Edition), 2021, 37(3):237-244.DOI:10.3969/j.issn.1003-7985.2021.03.001.
Last Update: 2021-09-20