|Table of Contents|

[1] Yao Suyi, Jiang Jianguo,. Buck converter stability techniques for secondary filtersand adaptive voltage positioning [J]. Journal of Southeast University (English Edition), 2021, 37 (3): 258-263. [doi:10.3969/j.issn.1003-7985.2021.03.004]
Copy

Buck converter stability techniques for secondary filtersand adaptive voltage positioning()
基于二次滤波器和自适应电压调节的降压变换器稳定性技术
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 3
Page:
258-263
Research Field:
Electrical Engineering
Publishing date:
2021-09-20

Info

Title:
Buck converter stability techniques for secondary filtersand adaptive voltage positioning
基于二次滤波器和自适应电压调节的降压变换器稳定性技术
Author(s):
Yao Suyi Jiang Jianguo
School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
姚苏毅 姜建国
上海交通大学电子信息与电气工程学院, 上海 200240
Keywords:
buck converter secondary filter adaptive voltage positioning(AVP) output voltage noise small-signal model
降压变换器 二次滤波器 自适应电压调节 输出电压噪声 小信号模型
PACS:
TM46
DOI:
10.3969/j.issn.1003-7985.2021.03.004
Abstract:
To reduce output voltage noise and improve dynamic response performance, this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP). A hybrid control method was proposed for the compensation of the secondary filter. The introduction of a high-frequency feedback path, in addition to the traditional feedback path, effectively improved the influence of the secondary filter on the loop stability and direct current regulation performance. A small-signal model of the buck converter based on the proposed control method was derived, and the stability and selection of control parameters were analyzed. AVP is realized using an easy-to-implement and low-cost control method that was proposed to improve dynamic response performance by changing the low-frequency gain of the control loop and load regulation of the output voltage. The experimental results of the buck converter showed that the proposed method effectively reduced the output voltage noise by 50% and improved the dynamic response capability to meet the target requirements of mainstream electronic systems.
为降低输出电压噪声, 改善动态响应性能, 设计了一种基于二次滤波器和自适应输出电压调节(AVP)的降压变换器.针对二次滤波器的补偿, 提出了一种混合控制方式.在传统的反馈环节外, 增加一个高频通路环节, 有效改善了二次滤波器对环路稳定性和直流调节性能方面的影响.推导出基于该控制方法的降压变换器的小信号模型, 并对其稳定性和控制参数的选取进行了分析.为了实现自适应输出电压调节, 提出了一种易于实现且低成本的控制方法, 通过改变控制环路低频增益和输出电压负载调整率来改善动态响应性能.降压变换器原型试验结果表明, 所提方法可有效降低50%的输出电压噪声, 同时改善了动态响应能力, 达到目前主流电子系统的指标需求.

References:

[1] Ridley R B. Secondary LC filter analysis and design techniques for current-mode-controlled converters [J].IEEE Transactions on Power Electronics, 1988, 3(4): 499-507. DOI: 10.1109/63.17972.
[2] Sanal E, Dost P, Sourkounis C. LCL-Filter design for a battery charger based on buck converter(DCDC converter)[C]// IEEE International Conference on Renewable Energy Research and Applications(ICRERA). Birmingham, UK, 2016: 101-110. DOI: 10.1109/ICRERA.2016.7884408.
[3] Tang N, Nguyen B, Molavi R, et al. Fully integrated buck converter with fourth-order low-pass filter [J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3700-3707. DOI: 10.1109/TPEL.2016.2593049.
[4] Cho Y K, Kim M D, Kim C Y. A low switching noise and high-efficiency buck converter using a continuous-time reconfigurable delta-sigma modulator [J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10501-10511. DOI: 10.1109/TPEL.2018.2806360.
[5] Jiang Y J, Fayed A. A buck converter with optimized dynamic response using lag-lead active voltage positioning [C]// IEEE 60th International Midwest Symposium on Circuits and Systems(MWSCAS). Boston, MA, USA, 2017: 11-18. DOI: 10.1109/MWSCAS.2017.8052954.
[6] Chen C J, Lu S H, Hsiao S F, et al. A current-mode buck converter with reconfigurable on-chip compensation and adaptive voltage positioning [J]. IEEE Transactions on Power Electronics, 2019, 34(1): 485-494. DOI: 10.1109/TPEL.2018.2827949.
[7] Tsai C H, Chen B M, Li H L. Switching frequency stabilization techniques for adaptive on-time controlled buck converter with adaptive voltage positioning mechanism [J]. IEEE Transactions on Power Electronics, 2016, 31(1): 443-451. DOI: 10.1109/TPEL.2015.2405339.
[8] Lee M, Chen D, Huang K, et al. Modeling and design for a novel adaptive voltage positioning(AVP)scheme for multiphase VRMs [J]. IEEE Transactions on Power Electronics, 2008, 23(4):1733-1742. DOI: 10.1109/TPEL.2008.924822.
[9] Hu K Y, Chen B M, Tsai C. A digitally controlled buck converter with current sensor-less adaptive voltage positioning(AVP)mechanism [C]// International Symposium on VLSI Design, Automation and Test. Hsinchu, China, 2017: 332-341. DOI:10.1109/VLSI-DAT.2017.7939664.
[10] Hu K Y, Tsai C H, Tsai C W. Digital V2 constant on-time control buck converter with adaptive voltage positioning and automatic calibration mechanism [J]. IEEE Transactions on Power Electronics, 2021, 36(6): 7178-7188.DOI: 10.1109/TPEL.2020.3039061.

Memo

Memo:
Biographies: Yao Suyi(1982—), male, Ph.D. candidate; Jiang Jianguo(corresponding author), male, doctor, professor, jjg6722@163.com.
Citation: Yao Suyi, Jiang Jianguo. Buck converter stability techniques for secondary filters and adaptive voltage positioning[J].Journal of Southeast University(English Edition), 2021, 37(3):258-263.DOI:10.3969/j.issn.1003-7985.2021.03.004.
Last Update: 2021-09-20