|Table of Contents|

[1] Nguyen Van Liem, Zhang Jianrun, Jiao Renqiang, et al. Method of ameliorating the lubrication and friction performanceof an engine based on different microtextures [J]. Journal of Southeast University (English Edition), 2021, 37 (4): 365-371. [doi:10.3969/j.issn.1003-7985.2021.04.004]
Copy

Method of ameliorating the lubrication and friction performanceof an engine based on different microtextures()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 4
Page:
365-371
Research Field:
Traffic and Transportation Engineering
Publishing date:
2021-12-20

Info

Title:
Method of ameliorating the lubrication and friction performanceof an engine based on different microtextures
Author(s):
Nguyen Van Liem1 2 Zhang Jianrun2 Jiao Renqiang1
1Hubei Key Laboratory of Intelligent Conveying Technology and Device, Hubei Polytechnic University, Huangshi 435003, China
2School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Keywords:
crankpin bearing microtextures lubrication and friction performance(LFP) texture
PACS:
U461.3
DOI:
10.3969/j.issn.1003-7985.2021.04.004
Abstract:
A design of different microtextures on the surface of the crankpin bearing(CB)is proposed to ameliorate the lubrication and friction performance(LFP)of engines. On the basis of the CB’s hydrodynamic lubrication model, the bearing surface of CB using different microtextures, such as wedge-shaped textures(WSTs), square textures(STs), circular textures(CTs), and combined square-circular textures(CSCTs), is simulated and assessed under various external loads of the CB at an engine speed of 2 000 r/min. The pressure of the oil film, the frictional force, the force of the solid asperity contact, and the friction coefficient of the CB are used as objective functions. Results indicate that the bearing surface designed by the STs remarkably improves the CB’s LFP in comparison with other structures of WSTs, CTs, and CSCTs. Particularly, the average values of the frictional force, solid asperity contact, and friction coefficient of the CB using the STs are greatly reduced by 28.5%, 14.5%, and 33.2% and by 34.4%, 26.3%, and 43.6% in comparison with the optimized CB dimensions and CTs, respectively. Therefore, the application of the STs on the CB surfaces can enhance the LFP of engines.

References:

[1] Liu K, Xie Y B, Gui C L. A comprehensive study of the friction and dynamic motion of the piston assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1998, 212(3): 221-226. DOI:10.1243/1350650981542038.
[2] Guzzomi A L, Hesterman D C, Stone B J. Variable inertia effects of an engine including piston friction and a crank or gudgeon pin offset[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(3): 397-414. DOI:10.1243/09544070jauto590.
[3] Wang X L, Zhang J Y, Dong H. Analysis of bearing lubrication under dynamic loading consideringmicropolar and cavitating effects[J]. Tribology International, 2011, 44(9): 1071-1075. DOI:10.1016/j.triboint.2011.05.002.
[4] Meng X H, Ning L P, Xie Y B, et al. Effects of the connecting-rod-related design parameters on the piston dynamics and the skirt-liner lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227(6): 885-898. DOI:10.1177/0954407012464025.
[5] Zhao B, Dai X D, Zhang Z N, et al. A new numerical method for piston dynamics and lubrication analysis[J].Tribology International, 2016, 94: 395-408. DOI:10.1016/j.triboint.2015.09.037.
[6] Fesanghary M, Khonsari M M. Topological and shape optimization of thrust bearings for enhanced load-carrying capacity[J]. Tribology International, 2012, 53: 12-21. DOI:10.1016/j.triboint.2012.03.018.
[7] Nguyen V L, Zhang J R, Jiao R Q, et al. Effects of crankpin bearing speed and dimension on engine power [J]. Journal of Southeast University(English Edition), 2021, 37(2): 119-127. DOI: 10.3969/j.issn.1003-7985.2021.02.001.
[8] Nguyen V, Wu Z P, Le V. Optimization of crankpin bearing lubrication under dynamic loading considering effect of micro asperity contact[J].Industrial Lubrication and Tribology, 2020, 72(10): 1173-1179. DOI:10.1108/ilt-02-2020-0072.
[9] Zhang H, Hua M, Dong G N, et al. A mixed lubrication model for studying tribological behaviors of surface texturing[J]. Tribology International, 2016, 93: 583-592. DOI:10.1016/j.triboint.2015.03.027.
[10] Kovalchenko A, Ajayi O, Erdemir A, et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J]. Tribology International, 2005, 38(3): 219-225. DOI:10.1016/j.triboint.2004.08.004.
[11] Tomanik E, Profito F J, Zachariadis D C. Modelling the hydrodynamic support of cylinder bore and piston rings with laser textured surfaces[J]. Tribology International, 2013, 59: 90-96. DOI:10.1016/j.triboint.2012.01.016.
[12] Etsion I. Modeling of surface texturing in hydrodynamic lubrication[J]. Friction, 2013, 1(3): 195-209. DOI:10.1007/s40544-013-0018-y.
[13] Gropper D, Wang L, Harvey T J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings[J].Tribology International, 2016, 94: 509-529. DOI:10.1016/j.triboint.2015.10.009.
[14] Zhang H, Hua M, Dong G Z, et al. Optimization of texture shape based on genetic algorithm under unidirectional sliding[J]. Tribology International, 2017, 115: 222-232. DOI:10.1016/j.triboint.2017.05.017.
[15] Jiao R Q, Nguyen V L, Le V, et al. Optimal design of micro-dimples on crankpin bearing surface for improving engine’s lubrication and friction[J]. Industrial Lubrication and Tribology, 2021, 73(1): 52-59. DOI:10.1108/ilt-04-2020-0152.
[16] Pei S Y, Ma S L, Xu H, et al. A multiscale method of modeling surface texture in hydrodynamic regime[J]. Tribology International, 2011, 44(12): 1810-1818. DOI:10.1016/j.triboint.2011.07.005.
[17] Rosenkranz A, Costa H L, Profito F, et al. Influence of surface texturing on hydrodynamic friction in plane converging bearings—an experimental and numerical approach[J]. Tribology International, 2019, 134: 190-204. DOI:10.1016/j.triboint.2019.01.042.
[18] Grützmacher P G, Profito F J, Rosenkranz A. Multi-scale surface texturing in tribology—current knowledge and future perspectives[J]. Lubricants, 2019, 7(11): 95. DOI:10.3390/lubricants7110095.
[19] Liu J, Xu Y J, Pan G. A combined acoustic and dynamic model of a defective ball bearing[J]. Journal of Sound and Vibration, 2021, 501: 116029. DOI:10.1016/j.jsv.2021.116029.
[20] Hu T, Xie L X, Liu J R. Effects of rotor surface texture on rotary vane actuator end sealing performance[J]. Tribology International, 2019, 140: 105868. DOI:10.1016/j.triboint.2019.105868.
[21] Marian M, Grützmacher P, Rosenkranz A, et al. Designing surface textures for EHL point-contacts—transient 3D simulations, meta-modeling and experimental validation[J]. Tribology International, 2019, 137: 152-163. DOI:10.1016/j.triboint.2019.03.052.
[22] Martan J, Moskal D, Smeták L, et al. Performance and accuracy of the shifted laser surface texturing method[J]. Micromachines, 2020, 11(5): 520. DOI:10.3390/mi11050520.
[23] Zhang H, Hua M, Dong G N, et al. Boundary slip surface design for high speed water lubricated journal bearings[J]. Tribology International, 2014, 79: 32-41. DOI:10.1016/j.triboint.2014.05.022.
[24] Hua W L, Nguyen V, Le V. Analysis of dimensions of surface textures on lubrication and friction of an engine[J]. SAE International Journal of Engines, 2021, 15: 03-15-01-0001. DOI:10.4271/03-15-01-0001.

Memo

Memo:
Biographies: Nguyen Van Liem(1986—), male, doctor; Zhang Jianrun(corresponding author), male, doctor, professor, zhangjr@seu.edu.cn.
Foundation items: The National Key Research and Development Program of China(No.2019YFB2006402), the Open Fund Project of Hubei Key Laboratory of Intelligent Transportation Technology and Device, Hubei Polytechnic University(No.2021XZ107), the Key Scientific Research Project of Hubei Polytechnic University(No.21xjz02A).
Citation: Nguyen Van Liem, Zhang Jianrun, Jiao Renqiang. Method of ameliorating the lubrication and friction performance of an engine based on different microtextures[J].Journal of Southeast University(English Edition), 2021, 37(4):365-371.DOI:10.3969/j.issn.1003-7985.2021.04.004.
Last Update: 2021-12-20