[1] Liu K, Xie Y B, Gui C L. A comprehensive study of the friction and dynamic motion of the piston assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1998, 212(3): 221-226. DOI:10.1243/1350650981542038.
[2] Guzzomi A L, Hesterman D C, Stone B J. Variable inertia effects of an engine including piston friction and a crank or gudgeon pin offset[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(3): 397-414. DOI:10.1243/09544070jauto590.
[3] Wang X L, Zhang J Y, Dong H. Analysis of bearing lubrication under dynamic loading consideringmicropolar and cavitating effects[J]. Tribology International, 2011, 44(9): 1071-1075. DOI:10.1016/j.triboint.2011.05.002.
[4] Meng X H, Ning L P, Xie Y B, et al. Effects of the connecting-rod-related design parameters on the piston dynamics and the skirt-liner lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227(6): 885-898. DOI:10.1177/0954407012464025.
[5] Zhao B, Dai X D, Zhang Z N, et al. A new numerical method for piston dynamics and lubrication analysis[J].Tribology International, 2016, 94: 395-408. DOI:10.1016/j.triboint.2015.09.037.
[6] Fesanghary M, Khonsari M M. Topological and shape optimization of thrust bearings for enhanced load-carrying capacity[J]. Tribology International, 2012, 53: 12-21. DOI:10.1016/j.triboint.2012.03.018.
[7] Nguyen V L, Zhang J R, Jiao R Q, et al. Effects of crankpin bearing speed and dimension on engine power [J]. Journal of Southeast University(English Edition), 2021, 37(2): 119-127. DOI: 10.3969/j.issn.1003-7985.2021.02.001.
[8] Nguyen V, Wu Z P, Le V. Optimization of crankpin bearing lubrication under dynamic loading considering effect of micro asperity contact[J].Industrial Lubrication and Tribology, 2020, 72(10): 1173-1179. DOI:10.1108/ilt-02-2020-0072.
[9] Zhang H, Hua M, Dong G N, et al. A mixed lubrication model for studying tribological behaviors of surface texturing[J]. Tribology International, 2016, 93: 583-592. DOI:10.1016/j.triboint.2015.03.027.
[10] Kovalchenko A, Ajayi O, Erdemir A, et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J]. Tribology International, 2005, 38(3): 219-225. DOI:10.1016/j.triboint.2004.08.004.
[11] Tomanik E, Profito F J, Zachariadis D C. Modelling the hydrodynamic support of cylinder bore and piston rings with laser textured surfaces[J]. Tribology International, 2013, 59: 90-96. DOI:10.1016/j.triboint.2012.01.016.
[12] Etsion I. Modeling of surface texturing in hydrodynamic lubrication[J]. Friction, 2013, 1(3): 195-209. DOI:10.1007/s40544-013-0018-y.
[13] Gropper D, Wang L, Harvey T J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings[J].Tribology International, 2016, 94: 509-529. DOI:10.1016/j.triboint.2015.10.009.
[14] Zhang H, Hua M, Dong G Z, et al. Optimization of texture shape based on genetic algorithm under unidirectional sliding[J]. Tribology International, 2017, 115: 222-232. DOI:10.1016/j.triboint.2017.05.017.
[15] Jiao R Q, Nguyen V L, Le V, et al. Optimal design of micro-dimples on crankpin bearing surface for improving engine’s lubrication and friction[J]. Industrial Lubrication and Tribology, 2021, 73(1): 52-59. DOI:10.1108/ilt-04-2020-0152.
[16] Pei S Y, Ma S L, Xu H, et al. A multiscale method of modeling surface texture in hydrodynamic regime[J]. Tribology International, 2011, 44(12): 1810-1818. DOI:10.1016/j.triboint.2011.07.005.
[17] Rosenkranz A, Costa H L, Profito F, et al. Influence of surface texturing on hydrodynamic friction in plane converging bearings—an experimental and numerical approach[J]. Tribology International, 2019, 134: 190-204. DOI:10.1016/j.triboint.2019.01.042.
[18] Grützmacher P G, Profito F J, Rosenkranz A. Multi-scale surface texturing in tribology—current knowledge and future perspectives[J]. Lubricants, 2019, 7(11): 95. DOI:10.3390/lubricants7110095.
[19] Liu J, Xu Y J, Pan G. A combined acoustic and dynamic model of a defective ball bearing[J]. Journal of Sound and Vibration, 2021, 501: 116029. DOI:10.1016/j.jsv.2021.116029.
[20] Hu T, Xie L X, Liu J R. Effects of rotor surface texture on rotary vane actuator end sealing performance[J]. Tribology International, 2019, 140: 105868. DOI:10.1016/j.triboint.2019.105868.
[21] Marian M, Grützmacher P, Rosenkranz A, et al. Designing surface textures for EHL point-contacts—transient 3D simulations, meta-modeling and experimental validation[J]. Tribology International, 2019, 137: 152-163. DOI:10.1016/j.triboint.2019.03.052.
[22] Martan J, Moskal D, Smeták L, et al. Performance and accuracy of the shifted laser surface texturing method[J]. Micromachines, 2020, 11(5): 520. DOI:10.3390/mi11050520.
[23] Zhang H, Hua M, Dong G N, et al. Boundary slip surface design for high speed water lubricated journal bearings[J]. Tribology International, 2014, 79: 32-41. DOI:10.1016/j.triboint.2014.05.022.
[24] Hua W L, Nguyen V, Le V. Analysis of dimensions of surface textures on lubrication and friction of an engine[J]. SAE International Journal of Engines, 2021, 15: 03-15-01-0001. DOI:10.4271/03-15-01-0001.