[1] Ni Y, Zhou Y D. Teaching and learning fraction and rational numbers: The origins and implications of whole number bias[J]. Educational Psychologist, 2005, 40(1): 27-52. DOI: 10.1207/s15326985ep4001_3.
[2] Dehaene S, Cohen L. Towards an anatomical and functional model of number processing[J]. Mathematical Cognition, 1995, 7(1): 83-120.
[3] Pinel P, Dehaene S, Riviere D, et al. Modulation of parietal activation by semantic distance in a number comparison task[J]. Neuroimage, 2001, 14(5): 1013-26. DOI: 10.1006/nimg.2001.0913.
[4] Rapp M, Bassok M, DeWolf M, et al. Modeling discrete and continuous entities with fractions and decimals[J]. Journal of Experimental Psychology: Applied, 2015, 21(1): 47-56. DOI: 10.1037/xap0000036.
[5] Lee H S, DeWolf M, Bassok M, et al. Conceptual and procedural distinctions between fractions and decimals: A cross-national comparison[J]. Cognition, 2016, 147: 57-69. DOI: 10.1016/j.cognition. 2015.11.005.
[6] Sokolowski H M, Fias W, Mousa A, et al. Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis[J]. Neuroimage, 2017, 146: 376-394. DOI: 10.1016/j. neuroimage.2016.10.028.
[7] Szucs D, Csepe V. The effect of numerical distance and stimulus probability on ERP components elicited by numerical incongruencies in mental addition[J]. Cognitive Brain Research, 2005, 22(2): 289-300. DOI: 10.1016/j.cogbrainres.2004.04.010.
[8] DeWolf M, Grounds M A, Bassok M, et al. Magnitude comparison with different types of rational numbers[J]. Journal of Experimental Psychology: Human Perception and Performance, 2014, 40(1): 71-82. DOI: 10.1037/a0032916.
[9] Cao B, Li F, Li H. Notation-dependent processing of numerical magnitude: Electrophysiological evidence from Chinese numerals[J]. Biological Psychology, 2010, 83(1): 47-55. DOI: 10.1016/j.biopsycho. 2009.10.003.
[10] Jiang T, Qiao S, Li J, et al. Effects of symbol type and numerical distance on the human event-related potential[J]. Neuropsychologia, 2010, 48(1): 201-210. DOI: 10.1016/j.neuropsychologia.2009.09.005.
[11] Luo W, Liu D, He W, et al. Dissociated brain potentials for two calculation strategies[J]. Neuroreport, 2009, 20(4):360-364.DOI:10.1097/WNR.0b013e328323d737.
[12] Zhou X L, Chen C S, Dong Q, et al. Numerical distance effect in the N240 component in a number-matching task[J]. Neuroreport, 2006, 17(10): 991-994. DOI: 10.1097/01.wnr.0000221840.12632.9f.
[13] Zhou X L, Chen C S, Dong Q, et al. Event-related potentials of single-digit addition, subtraction, and multiplication[J]. Neuropsychologia, 2006, 44(12): 2500-2507. DOI: 10.1016/j.neuro psychologia.2006.04.003.
[14] El Yagoubi R, Lemaire P, Besson M. Different brain mechanisms mediate two strategies in arithmetic: Evidence from event-related brain potentials[J]. Neuropsychologia, 2003, 41(7): 855-862. DOI: 10.1016/s0028-3932(02)00180-x.
[15] Stanescu-Cosson R, Pinel P, Van de Moortele P, et al. Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation[J]. Brain, 2000, 123: 2240-2255. DOI: 10.1093/brain/123.11.2240.
[16] Obersteiner A, Tumpek C. Measuring fraction comparison strategies with eye-tracking[J]. ZDM Mathematics Education, 2015, 48(3): 255-266. DOI: 10.1007/s11858-015-0742-z.
[17] Szucs D, Csepe V. Access to numerical information is dependent on the modality of stimulus presentation in mental addition: A combined ERP and behavioral study[J]. Cognitive Brain Research, 2004, 19(1): 10-27. DOI: 10.1016/j.cogbrainres.2003.11.002.
[18] Zhang L, Wang Q, Lin C, et al. An ERP study of the processing of common and decimal fractions: How different they are[J]. PLoS One, 2013, 8(7): e69487. DOI: 10.1371/journal.pone.0069487.
[19] Salillas E, Carreiras M. Core number representations are shaped by language[J]. Cortex, 2014, 52: 1-11. DOI: 10.1016/j.cortex.2013. 12.009.
[20] Arsalidou M, Taylor M J. Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations[J]. Neuroimage, 2011, 54(3): 2382-2393. DOI: 10.1016/j.neuroimage.2010.10.009.
[21] DeWolf M, Chiang J N, Bassok M, et al. Neural representations of magnitude for natural and rational numbers[J]. Neuroimage, 2016, 141: 304-312. DOI: 10.1016/j.neuroimage.2016.07.052.
[22] DeWolf M, Bassok M, Holyoak K J. Conceptual structure and the procedural affordances of rational numbers: Relational reasoning with fractions and decimals[J]. Journal of Experimental Psychology: General, 2015, 144(1): 127-150. DOI: 10.1037/xge0000034.
[23] Van Beek L, Ghesquier P, De Smedt B, et al. The arithmetic problem size effect in children: An event-related potential study[J]. Frontiers in Human Neuroscience, 2014, 8: 756. DOI: 10.3389/fnhum.2014.00756.
[24] Qiu K, Wang Y. Conceptual distinctions and preferential alignment across rational number representations[J]. European Journal of Psychology of Education, 2020, 36:865-881. DOI: 10.1007/s10212-020-00502-4.
[25] Hurst M, Cordes S. Working memory strategies during rational number magnitude processing[J]. Journal of Educational Psychology, 2017, 109(5): 694-708. DOI: 10.1037/edu0000169.
[26] Luck S J. Multiple mechanisms of visual-spatial attention: Recent evidence from human electrophysiology[J]. Behavioural Brain Research, 1995, 71: 113-123. DOI: 10.1016/0166-4328(95)00041-0.
[27] Benavides-Varela S, Basso Moro S, Brigadoi S, et al. N2pc reflects two modes for coding the number of visual targets[J]. Psychophysiology, 2018, 55(11): e13219. DOI: 10.1111/psyp.13219.
[28] De Smedt B, Holloway I D, Ansari D. Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency[J]. Neuroimage, 2011, 57(3): 771-781. DOI: 10.1016/j.neuroimage.2010.12.037.
[29] Temple E, Posner M I. Brain mechanisms of quantity are similar in 5-year-old children and adults[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 7836-7841. DOI: 10.1073/pnas.95.13.7836.
[30] Chen M, Wang Q, Zhang L. An ERP study on the processing of common and decimal fractions affected by contexts[J]. Psychological Research, 2013, 6(3): 29-38. DOI:CNKI:SUN:OXLY.0.2013-03-006. (in Chinese)
[31] Zhang L, Xin Z, Li F, et al. An ERP study on the processing of common fractions[J]. Experimental Brain Research, 2012, 217(1): 25-34. DOI: 10.1007/s00221-011-2969-4.
[32] Plummer P, DeWolf M, Bassok M, et al. Reasoning strategies with rational numbers revealed by eye tracking[J]. Attention, Perception, & Psychophysics, 2017, 79(5): 1426-1437. DOI: 10.3758/s13414-017-1312-y.
[33] Schmithorst V J, Brown R D. Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group independent component analysis of the mental addition and subtraction of fractions[J]. Neuroimage, 2004, 22(3): 1414-1420. DOI: 10.1016/j.neuroimage.2004.03.021.