|Table of Contents|

[1] Jiao Haihan, Yan Huadong, Jin Hui, et al. Evaluation of mechanical properties of cast steel nodesbased on GTN damage model [J]. Journal of Southeast University (English Edition), 2021, 37 (4): 401-407. [doi:10.3969/j.issn.1003-7985.2021.04.009]
Copy

Evaluation of mechanical properties of cast steel nodesbased on GTN damage model()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 4
Page:
401-407
Research Field:
Materials Sciences and Engineering
Publishing date:
2021-12-20

Info

Title:
Evaluation of mechanical properties of cast steel nodesbased on GTN damage model
Author(s):
Jiao Haihan1 2 Yan Huadong1 3 Jin Hui1 2
1Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 211189, China
2School of Civil Engineering, Southeast University, Nanjing 211189, China
3Test and Measuring Academy of Norinco Group, Huayin 714200, China
Keywords:
cast steel node Gurson-Tvergaard-Needleman(GTN)damage model bearing capacity model parameters
PACS:
TU512.9
DOI:
10.3969/j.issn.1003-7985.2021.04.009
Abstract:
Based on the Gurson-Tvergaard-Needleman(GTN)damage model considering the defect damage evolution, the influence of void defects caused by the casting process on cast steel nodes’ mechanical properties was studied. Firstly, based on the GTN damage model, the model’s parameter combination of G20Mn5N cast steel was given. Then, the mechanical properties of cast steel nodes were evaluated using the GTN damage model in ABAQUS software, and the influence of model parameters on the failure results was investigated. The results show that the cast steel node considering the GTN damage model fails under 1.93 times of the load. The bearing capacity is lower than that of the bilinear model, and the failure speed is faster. Changes in model parameters will cause a shift in the failure critical point. Meanwhile, the plastic strain index affects the void volume fractions, which shows different variation laws under uniaxial tensile and cyclic loads. Therefore, the GTN damage model establishes the relationship between the micro-defects and macro-mechanical properties of materials, which can better simulate the failure results of structures.

References:

[1] Yin Y, Li S, Han Q H, et al. Material parameters in void growth model for G20Mn5QT cast steel at low temperatures[J]. Construction and Building Materials, 2020, 243:1-15. DOI: 10.1016/j.conbuildmat.2020.118123.
[2] Blair M, Monroe R, Beckermann C, et al. Predicting the occurrence and effects of defects in castings[J]. The Journal of The Minerals, 2005, 57(5):29-34. DOI: 10.1007/s11837-005-0092-3.
[3] Zhao C F, Li Z X. Influence of geometrical features of meso-defects on damage evolution of metal structure[J]. Applied Mechanics and Materials, 2015, 723:21-25. DOI: 10.4028/www.scientific.net/AMM.723.21.
[4] Springmann M, Kuna M. Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques[J]. Computational Materials Science, 2005, 32(3/4):544-552. DOI: 10.1016/j.commatsci.2004.09.010.
[5] Gurson A L. Porous rigid-plastic materials containing rigid inclusions-yield function, plastic potential, and void nucleation[J]. Physical Metallurgy of Fracture, 1978(5): 357-364. DOI: 10.1016/B978-0-08-022138-0.50058-7.
[6] Tvergaard V. Influence of voids on shear band instabilities under plane-strain conditions[J]. International Journal of Fracture, 1981, 17(4): 389-407. DOI: 10.1007/BF00036191.
[7] Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars[J]. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490. DOI: 10.1016/0022-5096(84)90031-0.
[8] Roux E, Bernacki M, Bouchard P O. A level-set and anisotropic adaptive remeshing strategy for the modeling of void growth under large plastic strain[J]. Computational Materials Science, 2013, 68:32-46. DOI: 10.1016/j.commatsci.2012.10.004.
[9] Xu Y D, Qian C X. Application of Gurson-Tvergaard-Needleman constitutive model to the tensile behavior of reinforcing bars with corrosion pits[J]. Plos One, 2017, 8(1): 1-7. DOI: 10.1371/journal.pone.0054368.
[10] Liu X G, Wang C, Deng Q F, et al. High-temperature fracture behavior of MnS inclusions based on GTN model[J]. Journal of Iron and Steel Research International, 2019, 26:941-952. DOI: 10.1007/s42243-018-0202-4.
[11] Steglich D, Wafai H, Besson J. Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal[J]. Engineering Fracture Mechanics, 2010, 77(17):3501-3518. DOI: 10.1016/j.engfracmech.2010.08.021.
[12] Li G, Cui S S. A review on theory and application of plastic meso-damage mechanics[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 1-12. DOI: 10.1016/j.tafmec.2020.102686.
[13] Zhang Z L, Thaulow C, �D8;deg�E5;rd J. A complete Gurson model approach for ductile fracture[J]. Engineering Fracture Mechanics, 2000, 67(2):155-168. DOI: 10.1016/S0013-7944(00)00055-2.
[14] Chu C C, Needleman A. Void Nucleation effects in biaxially stretched sheets[J]. Journal of Engineering Materials and Technology, 1980, 102(3): 249-256. DOI: 10.1115/1.3224807.
[15] Acharyya S, Dhar S. A complete GTN model for prediction of ductile failure of pipe[J]. Journal of Materials Science, 2008, 43(6):1897-1909. DOI: 10.1007/s10853-007-2369-0.
[16] Zhou J, Gao X, Sobotka J C, et al. On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions[J]. International Journal of Solids and Structures, 2014, 51(18):3273-3291. DOI: 10.1016/j.ijsolstr.2014.05.028.
[17] Kami A, Dariani B M, Vanini A S, et al. Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model[J]. Journal of Materials Processing Technology, 2014, 216:472-483. DOI: 10.1016/j.jmatprotec.2014.10.017.
[18] Zhao P J, Chen Z H, Dong C F. Experimental and numerical analysis of micromechanical damage for DP600 steel in fine-blanking process[J]. Journal of Materials Processing Tech, 2016, 236:16-25. DOI: 10.1016/j.jmatprotec.2016.05.002.
[19] Jiang W, Li Y Z, Su J. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics A/solids, 2016, 57:132-148. DOI: 10.1016/j.euromechsol.2015.12.009.
[20] Gholipour H, Biglari F R, Nikbin K. Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests[J]. International Journal of Mechanical Sciences, 2019, 164:1-15. DOI: 10.1016/j.ijmecsci.2019.105170.
[21] Yan H D, Jin H, Yao R G. Prediction of the damage and fracture of cast steel containing pores[J]. International Journal of Damage Mechanics, 2020, 29(1):1-18. DOI: 10.1177/1056789519872000.
[22] Yan H D, Tang Q, Jin H. Damage evolution analysis on cast steel joints with porosity defects[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(5):904-910. DOI:10.3969/j.issn.1001-0505.2019.05.013. (in Chinese)
[23] Yan H D, Jin H. Damage evolution analysis of cast steel GS-20Mn5V based on modified GTN model[J]. Journal of Southeast University(English Edition), 2018, 34(3):364-370.
[24] Ministry of Housing and Urban-rural Development of the People’s Republic of China. Technical specification for cast steel structure: JGJ/T 395—2017[S]. Beijing: China Construction Industry Press, 2017.(in Chinese)
[25] Luo L S, Wen H G, Duan X N. Research on bearing capacity of circular steel tubular KX-joint[J]. Steel Structure, 2018, 33(2):56-59, 109.(in Chinese)

Memo

Memo:
Biographies: Jiao Haihan(1997—), male, graduate; Jin Hui(corresponding author), female, doctor, professor, jinhui@seu.edu.cn.
Foundation items: The National Key Research and Development Program of China(No. 2017YFC0805100), the National Natural Science Foundation of China(No. 51578137), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics.
Citation: Jiao Haihan, Yan Huadong, Jin Hui.Evaluation of mechanical properties of cast steel nodes based on GTN damage model[J].Journal of Southeast University(English Edition), 2021, 37(4):401-407.DOI:10.3969/j.issn.1003-7985.2021.04.009.
Last Update: 2021-12-20