[1] Pan B, Qian K M, Xie H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review [J]. Measurement Science and Technology, 2009, 20(6): 1-17. DOI: 10.1088/0957-0233/20/6/062001.
[2] Wan T Y, Qian K M, Seah H S, et al. A flexible heterogeneous real-time digital image correlation system [J]. Optics and Lasers in Engineering, 2018, 110: 7-17. DOI: 10.1016/j.optlaseng.2018.05.010.
[3] Shao X X, Dai X J, Chen Z N, et al. Real-time 3D digital image correlation method and its application in human pulse monitoring [J]. Applied Optics, 2016, 55(4): 696-704. DOI: 10.1364/ao.55.000696.
[4] Xue Y, Cheng T, Xu X H, et al. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation [J]. Optics and Lasers in Engineering, 2017, 88: 82-90. DOI: 10.1016/j.optlaseng.2016.07.002.
[5] Wu R, Kong C, Li K, et al. Real-time digital image correlation for dynamic strain measurement [J]. Experimental Mechanics, 2016, 56(5): 833-843. DOI: 10.1007/s11340-016-0133-6.
[6] Huang J W, Zhang L Q, Jiang Z Y, et al. Heterogeneous parallel computing accelerated iterative subpixel digital image correlation [J]. Science China—Technological Sciences, 2018, 61(1): 74-85. DOI: 10.1007/s11431-017-9168-0.
[7] Isenburg M, Lindstrom P, Snoeyink J. Lossless compression of predicted floating-point geometry [J]. Computer-Aided Design, 2005, 37(8): 869-877. DOI: 10.1016/j.cad.2004.09.015.
[8] Lü S, Da F P, Huang Y. A fast and lossy compression algorithm for point-cloud models based on data type conversion [J]. Journal of Graphics, 2016, 37(2): 199-205. DOI:10.11996/JG.j.2095-302X.2016020199. (in Chinese)
[9] Hou Z L, Su X Y, Zhang Q C. Virtual structured-light coding for three-dimensional shape data compression [J]. Optics and Lasers in Engineering, 2012, 50(6): 844-849. DOI: 10.1016/j.optlaseng.2012.01.012.
[10] Karpinsky N, Zhang S. Composite phase-shifting algorithm for three-dimensional shape compression [J]. Optical Engineering, 2010, 49(6): 1-6. DOI: 10.1117/1.3456632.
[11] Zhang S. Three-dimensional range data compression using computer graphics rendering pipeline [J]. Applied Optics, 2012, 51(18): 4058-4064. DOI: 10.1364/ao.51.004058.
[12] Gu X F, Zhang S, Huang P S, et al. Holoimages [C]// Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling. Cardiff, UK, 2006: 129–138. DOI: 10.1145/1128888.1128906.
[13] Bell T, Vlahov B, Allebach J P, et al. Three-dimensional range geometry compression via phase encoding [J]. Applied Optics, 2017, 56(33): 9285-9292. DOI: 10.1364/AO.56.009285.
[14] Chen X, Zhang S. Three dimensional range geometry and texture data compression with space-filling curves [J]. Optics Express, 2017, 25(21): 26103-26117. DOI: 10.1364/OE.25.026103.
[15] Bell T, Zhang S. Multiwavelength depth encoding method for 3D range geometry compression [J]. Applied Optics, 2015, 54(36): 10684-10691. DOI: 10.1364/AO.54.010684.
[16] Wallace G K. The JPEG still picture compression standard [J]. Communications of the ACM, 1991, 34(4): 30-44. DOI: 10.1145/103085.103089.
[17] Christopoulos C, Skodras A, Ebrahimi T. The JPEG 2000 still image coding system: An overview [J]. IEEE Transactions on Consumer Electronics, 2000, 46(4): 1103-1127. DOI: 10.1109/30.920468.
[18] Taubman D S, Marcellin M W. JPEG 2000: Image compression fundamentals, standards and practice[M]. Amsterdam, the Netherlands: Kluwer Academic Publishers, 2001: 87-142. DOI: 10.1007/978-1-4615-0799-4.
[19] Rabbani M, Joshi R. An overview of the JPEG 2000 still image compression standard [J]. Signal Processing: Image Communication, 2002, 17(1): 3-48. DOI: 10.1016/s0923-5965(01)00024-8.
[20] Ahmed N, Natarajan T, Rao K R. Discrete cosine transform [J]. IEEE Transactions on Computers, 1974, 23(1): 90-93. DOI: 10.1109/T-C.1974.223784.
[21] Chen W H, Smith C H, Fralick S C. A fast computational algorithm for the discrete cosine transform [J]. IEEE Transactions on Communications, 1977, 25(9): 1004-1009. DOI: 10.1109/TCOM.1977.1093941.
[22] Lam E Y, Goodman J W. A mathematical analysis of the DCT coefficient distributions for images [J]. IEEE Transactions on Image Processing, 2000, 9(10): 1661-1666. DOI: 10.1109/83.869177.
[23] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps [J]. Journal of Fourier Analysis and Applications, 1998, 4(3): 247-269. DOI: 10.1007/bf02476026.
[24] Rioul O, Vetterli M. Wavelets and signal processing [J]. IEEE Signal Processing Magazine, 1991, 8(4): 14-38. DOI: 10.1109/79.91217.
[25] Shensa M J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms [J]. IEEE Transactions on Signal Processing, 1992, 40(10): 2464-2482. DOI: 10.1109/78.157290.
[26] Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets [J]. Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200. DOI: 10.1006/acha.1996.0015.
[27] Sullivan G J, Ohm J-R, Han W-J, et al. Overview of the high efficiency video coding(HEVC)standard [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649-1668. DOI: 10.1109/TCSVT.2012.2221191.
[28] Xu X Z, Liu S. Recent advances in video coding beyond the HEVC standard [J]. APSIPA Transactions on Signal and Information Processing, 2019, 8: 1-10. DOI: 10.1017/atsip.2019.11.
[29] Yang J, Bhattacharya K. Combining image compression with digital image correlation [J]. Experimental Mechanics, 2019, 59(5): 629-642. DOI: 10.1007/s11340-018-00459-y.
[30] Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard [J]. IEEE Signal Processing Magazine, 2001, 18(5): 36-58. DOI: 10.1109/79.952804.